Search results
Results From The WOW.Com Content Network
In chemistry and atomic physics, an electron shell may be thought of as an orbit that electrons follow around an atom's nucleus.The closest shell to the nucleus is called the "1 shell" (also called the "K shell"), followed by the "2 shell" (or "L shell"), then the "3 shell" (or "M shell"), and so on further and further from the nucleus.
Here [Ne] refers to the core electrons which are the same as for the element neon (Ne), the last noble gas before phosphorus in the periodic table. The valence electrons (here 3s 2 3p 3) are written explicitly for all atoms. Electron configurations of elements beyond hassium (element 108) have never been measured; predictions are used below.
English: Diagram showing the periodic table of elements in the form of their electron shells. Each element is detailed with the name, symbol, and number of electrons in each shell. The colour scheme is designed to match that used by Wikipedia for its own element related articles.
What links here; Upload file; Special pages; Printable version; Page information
Configurations of elements 109 and above are not available. Predictions from reliable sources have been used for these elements. Grayed out electron numbers indicate subshells filled to their maximum. Bracketed noble gas symbols on the left represent inner configurations that are the same in each period. Written out, these are: He, 2, helium : 1s 2
Electron shells are made up of one or more electron subshells, or sublevels, which have two or more orbitals with the same angular momentum quantum number l. Electron shells make up the electron configuration of an atom. It can be shown that the number of electrons that can reside in a shell is equal to .
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The form of the periodic table is closely related to the atomic electron configuration for each element. For example, all the elements of group 2 (the table's second column) have an electron configuration of [E] n s 2 (where [E] is a noble gas configuration), and have notable similarities in their chemical properties.