Ads
related to: 3 phase induction motors diagramregalrexnord.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
For example; a single-phase motor with 3 north and 3 south poles, having 6 poles per phase, is a 6-pole motor. A three-phase motor with 18 north and 18 south poles, having 6 poles per phase, is also a 6-pole motor. This industry standard method of counting poles results in the same synchronous speed for a given frequency regardless of polarity.
A diagram of EMALS' induction motor. Linear induction motors have also been used for launching aircraft, the Westinghouse Electropult [7] system in 1945 was an early example and the Electromagnetic Aircraft Launch System (EMALS) was due to be delivered in 2010.
A Dahlander motor (also known as a pole changing motor, dual- or two speed-motor) is a type of multispeed three-phase induction motor, in which the speed of the motor is varied by altering the number of poles; this is achieved by altering the wiring connections inside the motor.
A three-phase induction motor has a simple design, inherently high starting torque and high efficiency. Such motors are applied in industry for many applications. A three-phase motor is more compact and less costly than a single-phase motor of the same voltage class and rating, and single-phase AC motors above 10 hp (7.5 kW) are uncommon. Three ...
In vector control, an AC induction or synchronous motor is controlled under all operating conditions like a separately excited DC motor. [21] That is, the AC motor behaves like a DC motor in which the field flux linkage and armature flux linkage created by the respective field and armature (or torque component) currents are orthogonally aligned such that, when torque is controlled, the field ...
Retrieved from "https://en.wikipedia.org/w/index.php?title=Three-phase_induction_motor&oldid=1125968498"
The locomotives use three-phase induction motors. Lacking brushes and commutators, they require less maintenance. The early Italian and Swiss systems used a low frequency (16 + 2 ⁄ 3 Hz), and a relatively low voltage (3,000 or 3,600 volts) compared with later AC systems.
Indeed, where induction motors must run on single-phase power (such as is usually distributed in homes), the motor must contain some mechanism to produce a revolving field, otherwise the motor cannot generate any stand-still torque and will not start. The field produced by a single-phase winding can provide energy to a motor already rotating ...