Search results
Results From The WOW.Com Content Network
A two-tailed test applied to the normal distribution. A one-tailed test, showing the p-value as the size of one tail. In statistical significance testing, a one-tailed test and a two-tailed test are alternative ways of computing the statistical significance of a parameter inferred from a data set, in terms of a test statistic. A two-tailed test ...
GNU Octave implements various one-tailed and two-tailed versions of the test in the wilcoxon_test function. SciPy includes an implementation of the Wilcoxon signed-rank test in Python. Accord.NET includes an implementation of the Wilcoxon signed-rank test in C# for .NET applications.
In Dunnett's test we can use a common table of critical values, but more flexible options are nowadays readily available in many statistics packages. The critical values for any given percentage point depend on: whether a one- or- two-tailed test is performed; the number of groups being compared; the overall number of trials.
Suppose the data can be realized from an N(0,1) distribution. For example, with a chosen significance level α = 0.05, from the Z-table, a one-tailed critical value of approximately 1.645 can be obtained. The one-tailed critical value C α ≈ 1.645 corresponds to the chosen significance level.
In statistics, Welch's t-test, or unequal variances t-test, is a two-sample location test which is used to test the (null) hypothesis that two populations have equal means. It is named for its creator, Bernard Lewis Welch , and is an adaptation of Student's t -test , [ 1 ] and is more reliable when the two samples have unequal variances and ...
If we use the test statistic /, then under the null hypothesis is exactly 1 for two-sided p-value, and exactly / for one-sided left-tail p-value, and same for one-sided right-tail p-value. If we consider every outcome that has equal or lower probability than "3 heads 3 tails" as "at least as extreme", then the p -value is exactly 1 / 2 ...
The test is useful for categorical data that result from classifying objects in two different ways; it is used to examine the significance of the association (contingency) between the two kinds of classification. So in Fisher's original example, one criterion of classification could be whether milk or tea was put in the cup first; the other ...
One common use of the binomial test is the case where the null hypothesizes that two categories occur with equal frequency (: =), such as a coin toss.Tables are widely available to give the significance observed numbers of observations in the categories for this case.