Ads
related to: 3 point spherical triangle calculator
Search results
Results From The WOW.Com Content Network
Given a unit sphere, a "spherical triangle" on the surface of the sphere is defined by the great circles connecting three points u, v, and w on the sphere (shown at right). If the lengths of these three sides are a (from u to v ), b (from u to w ), and c (from v to w ), and the angle of the corner opposite c is C , then the (first) spherical ...
Analogously to their plane counterparts, spherical polygons with more than 3 sides can always be treated as the composition of spherical triangles. One spherical polygon with interesting properties is the pentagramma mirificum, a 5-sided spherical star polygon with a right angle at every vertex. From this point in the article, discussion will ...
An area formula for spherical triangles analogous to the formula for planar triangles. Given a fixed base , an arc of a great circle on a sphere, and two apex points and on the same side of great circle , Lexell's theorem holds that the surface area of the spherical triangle is equal to that of if and only if lies on the small-circle arc , where and are the points antipodal to and , respectively.
Spherical triangle solved by the law of cosines. Versions similar to the law of cosines for the Euclidean plane also hold on a unit sphere and in a hyperbolic plane. In spherical geometry, a triangle is defined by three points u, v, and w on the unit sphere, and the arcs of great circles connecting those points.
Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes.Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.
The sum of the angles of a spherical triangle is not equal to 180°. A sphere is a curved surface, but locally the laws of the flat (planar) Euclidean geometry are good approximations. In a small triangle on the face of the earth, the sum of the angles is only slightly more than 180 degrees. A sphere with a spherical triangle on it.
In trigonometry, the Snellius–Pothenot problem is a problem first described in the context of planar surveying.Given three known points A, B, C, an observer at an unknown point P observes that the line segment AC subtends an angle α and the segment CB subtends an angle β; the problem is to determine the position of the point P.