Search results
Results From The WOW.Com Content Network
The octant of a sphere is a spherical triangle with three right angles. Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, geodesics are great circles.
In spherical trigonometry, the law of cosines (also called the cosine rule for sides [1]) is a theorem relating the sides and angles of spherical triangles, analogous to the ordinary law of cosines from plane trigonometry. Spherical triangle solved by the law of cosines.
Spherical triangle solved by the law of cosines. Versions similar to the law of cosines for the Euclidean plane also hold on a unit sphere and in a hyperbolic plane. In spherical geometry, a triangle is defined by three points u, v, and w on the unit sphere, and the arcs of great circles connecting those points.
Spherical triangle. In spherical trigonometry, the half side formula relates the angles and lengths of the sides of spherical triangles, which are triangles drawn on the surface of a sphere and so have curved sides and do not obey the formulas for plane triangles. [1]
An area formula for spherical triangles analogous to the formula for planar triangles. Given a fixed base , an arc of a great circle on a sphere, and two apex points and on the same side of great circle , Lexell's theorem holds that the surface area of the spherical triangle is equal to that of if and only if lies on the small-circle arc , where and are the points antipodal to and , respectively.
In a small triangle on the face of the earth, the sum of the angles is only slightly more than 180 degrees. A sphere with a spherical triangle on it. Spherical geometry or spherics (from Ancient Greek σφαιρικά) is the geometry of the two-dimensional surface of a sphere [a] or the n-dimensional surface of higher dimensional spheres.
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes. Important in navigation , it is a special case of a more general formula in spherical trigonometry , the law of haversines , that relates the sides and angles of spherical triangles.
For the spherical case, one can first compute the length of side from the point at α to the ship (i.e. the side opposite to β) via the ASA formula = (+) + (), and insert this into the AAS formula for the right subtriangle that contains the angle α and the sides b and d: = = + . (The planar ...