Search results
Results From The WOW.Com Content Network
Critically short telomeres trigger a DNA damage response and cellular senescence. [32] Mice have much longer telomeres, but a greatly accelerated telomere shortening-rate and greatly reduced lifespan compared to humans and elephants. [33] Telomere shortening is associated with aging, mortality, and aging-related diseases in experimental animals.
However, the genes that have mutated in these diseases all have roles in the repair of DNA damage and the increased DNA damage may, itself, be a factor in the premature aging (see DNA damage theory of aging). An additional role in maintaining telomere length is an active area of investigation.
Resolving the question of why cancer cells have short telomeres led to the development of a two-stage model for how cancer cells subvert telomeric regulation of the cell cycle. First, the DNA damage checkpoint must be inactivated to allow cells to continue dividing even when telomeres pass the critical length threshold.
This results in the two daughter cells receiving an uneven chromatid. [4] Since the two resulting chromatids lack telomeres, when they replicate the BFB cycle will repeat, and will continue every subsequent cell division until those chromatids receive a telomere, usually from a different chromatid through the process of translocation. [4]
Telomeres are specialized protein–DNA constructs present at the ends of eukaryotic chromosomes, which prevent them from degradation and end-to-end chromosomal fusion. Most vertebrate telomeric DNA consists of long (T T A G G G)n repeats of variable length, often around 3-20kb. Subtelomeres are segments of DNA between telomeric caps and ...
At either end of a chromosome is a telomere, a cap of DNA that protects the rest of the chromosome from damage. The telomere has repetitive junk DNA and hence any enzymatic damage will not affect the coded regions. The areas of the p and q regions close to the telomeres are the subtelomeres, or subtelomeric regions. The areas closer to the ...
In 1999 it was reported that telomeres, which cap the end of chromosomes, terminate in a lariat-like structure termed a T-loop (Telomere-loop). [11] This is a loop of both strands of the chromosome which are joined to an earlier point in the double-stranded DNA by the 3' strand end invading the strand pair to form a D-loop.
Shelterin (also called telosome) is a protein complex known to protect telomeres in many eukaryotes from DNA repair mechanisms, as well as to regulate telomerase activity. In mammals and other vertebrates, telomeric DNA consists of repeating double-stranded 5'-TTAGGG-3' (G-strand) sequences (2-15 kilobases in humans) along with the 3'-AATCCC-5' (C-strand) complement, ending with a 50-400 ...