Ad
related to: 6x dna loading dye protocol
Search results
Results From The WOW.Com Content Network
Close-up of DNA ladders on an agarose gel. GelRed stain was used. Loading of a sample into a polyacrylamide gel electrophoresis well. An electrophoretic color marker is a chemical used to monitor the progress of agarose gel electrophoresis and polyacrylamide gel electrophoresis (PAGE) since DNA, RNA, and most proteins are colourless. [1]
Xylene cyanol can be used as an electrophoretic color marker, or tracking dye, to monitor the process of agarose gel electrophoresis and polyacrylamide gel electrophoresis. Bromophenol blue and orange G can also be used for this purpose. Once mixed with the sample, the concentration of xylene cyanol is typically about 0.005% to 0.03%.
DNA gel electrophoresis. The most common dye used to make DNA or RNA bands visible for agarose gel electrophoresis is ethidium bromide, usually abbreviated as EtBr. It fluoresces under UV light when intercalated into the major groove of DNA (or RNA).
DNA may be visualized using ethidium bromide which, when intercalated into DNA, fluoresce under ultraviolet light, while protein may be visualised using silver stain or Coomassie brilliant blue dye. Other methods may also be used to visualize the separation of the mixture's components on the gel.
There are two common methods in which to construct a DNA molecular-weight size marker. [3] One such method employs the technique of partial ligation. [3] DNA ligation is the process by which linear DNA pieces are connected to each other via covalent bonds; more specifically, these bonds are phosphodiester bonds. [4]
Cresol red can also be used as an electrophoretic color marker to monitor the process of agarose gel electrophoresis and polyacrylamide gel electrophoresis.In a 1% agarose gel, it runs approximately at the size of a 125 base pair (bp) DNA molecule (it depends on the concentration of buffer and other component).
A number of factors can affect the migration of nucleic acids: the dimension of the gel pores (gel concentration), size of DNA being electrophoresed, the voltage used, the ionic strength of the buffer, and the concentration of intercalating dye such as ethidium bromide if used during electrophoresis.
Loading aids; most PAGE systems are loaded from the top into wells within the gel. To ensure that the sample sinks to the bottom of the gel, sample buffer is supplemented with additives that increase the density of the sample. These additives should be non-ionic and non-reactive towards proteins to avoid interfering with electrophoresis.