Search results
Results From The WOW.Com Content Network
The batch and streaming sides each require a different code base that must be maintained and kept in sync so that processed data produces the same result from both paths. Yet attempting to abstract the code bases into a single framework puts many of the specialized tools in the batch and real-time ecosystems out of reach.
The first is an example of processing a data stream using a continuous SQL query (a query that executes forever processing arriving data based on timestamps and window duration). This code fragment illustrates a JOIN of two data streams, one for stock orders, and one for the resulting stock trades.
The previous algorithm describes the first attempt to approximate F 0 in the data stream by Flajolet and Martin. Their algorithm picks a random hash function which they assume to uniformly distribute the hash values in hash space. Bar-Yossef et al. in [10] introduced k-minimum value algorithm for determining number of distinct elements in data ...
The term "stream" is used in a number of similar ways: "Stream editing", as with sed, awk, and perl. Stream editing processes a file or files, in-place, without having to load the file(s) into a user interface. One example of such use is to do a search and replace on all the files in a directory, from the command line.
In computing, a pipeline or data pipeline [1] is a set of data processing elements connected in series, where the output of one element is the input of the next one. The elements of a pipeline are often executed in parallel or in time-sliced fashion. Some amount of buffer storage is often inserted between elements. Computer-related pipelines ...
For example, if you need to load data into two databases, you can run the loads in parallel (instead of loading into the first – and then replicating into the second). Sometimes processing must take place sequentially. For example, dimensional (reference) data are needed before one can get and validate the rows for main "fact" tables.
Streaming data is data that is continuously generated by different sources. Such data should be processed incrementally using stream processing techniques without having access to all of the data. In addition, it should be considered that concept drift may happen in the data which means that the properties of the stream may change over time.
Data Stream Mining (also known as stream learning) is the process of extracting knowledge structures from continuous, rapid data records. A data stream is an ordered sequence of instances that in many applications of data stream mining can be read only once or a small number of times using limited computing and storage capabilities.