When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. G*Power - Wikipedia

    en.wikipedia.org/wiki/G*Power

    In order to calculate power, the user must know four of five variables: either number of groups, number of observations, effect size, significance level (α), or power (1-β). G*Power has a built-in tool for determining effect size if it cannot be estimated from prior literature or is not easily calculable.

  3. Effect size - Wikipedia

    en.wikipedia.org/wiki/Effect_size

    In statistics, an effect size is a value measuring the strength of the relationship between two variables in a population, or a sample-based estimate of that quantity. It can refer to the value of a statistic calculated from a sample of data, the value of one parameter for a hypothetical population, or to the equation that operationalizes how statistics or parameters lead to the effect size ...

  4. Chi-squared test - Wikipedia

    en.wikipedia.org/wiki/Chi-squared_test

    A chi-squared test (also chi-square or χ 2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large. In simpler terms, this test is primarily used to examine whether two categorical variables ( two dimensions of the contingency table ) are independent in influencing the test statistic ...

  5. Omnibus test - Wikipedia

    en.wikipedia.org/wiki/Omnibus_test

    The F statistics of the omnibus test is: = = (¯ ¯) = = (¯) Where, ¯ is the overall sample mean, ¯ is the group j sample mean, k is the number of groups and n j is sample size of group j. The F statistic is distributed F (k-1,n-k),(α) under assumption of null hypothesis and normality assumption.

  6. Chi-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Chi-squared_distribution

    Because the square of a standard normal distribution is the chi-squared distribution with one degree of freedom, the probability of a result such as 1 heads in 10 trials can be approximated either by using the normal distribution directly, or the chi-squared distribution for the normalised, squared difference between observed and expected value.

  7. Pearson's chi-squared test - Wikipedia

    en.wikipedia.org/wiki/Pearson's_chi-squared_test

    = the number of cells in the table. The chi-squared statistic can then be used to calculate a p-value by comparing the value of the statistic to a chi-squared distribution. The number of degrees of freedom is equal to the number of cells , minus the reduction in degrees of freedom, .

  8. Bartlett's test - Wikipedia

    en.wikipedia.org/wiki/Bartlett's_test

    The test procedure due to M.S.E (Mean Square Error/Estimator) Bartlett test is represented here. This test procedure is based on the statistic whose sampling distribution is approximately a Chi-Square distribution with ( k − 1) degrees of freedom, where k is the number of random samples, which may vary in size and are each drawn from ...

  9. G-test - Wikipedia

    en.wikipedia.org/wiki/G-test

    There is nothing magical about a sample size of 1 000, it's just a nice round number that is well within the range where an exact test, chi-square test, and G–test will give almost identical p values. Spreadsheets, web-page calculators, and SAS shouldn't have any problem doing an exact test on a sample size of 1 000 . — John H. McDonald [2]