When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Laminar flow - Wikipedia

    en.wikipedia.org/wiki/Laminar_flow

    In that case, the velocity of flow varies from zero at the walls to a maximum along the cross-sectional centre of the vessel. The flow profile of laminar flow in a tube can be calculated by dividing the flow into thin cylindrical elements and applying the viscous force to them. [5] Another example is the flow of air over an aircraft wing.

  3. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    In the case of laminar flow, for a circular cross section: =, =, where Re is the Reynolds number, ρ is the fluid density, and v is the mean flow velocity, which is half the maximal flow velocity in the case of laminar flow. It proves more useful to define the Reynolds number in terms of the mean flow velocity because this quantity remains well ...

  4. Entrance length (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Entrance_length_(fluid...

    But this is not the fully developed fluid flow until the normalized temperature profile also becomes constant. [6] In case of laminar flow, the velocity profile in the fully developed region is parabolic but in the case of turbulent flow it gets a little flatter due to vigorous mixing in radial direction and eddy motion. The velocity profile ...

  5. Blasius boundary layer - Wikipedia

    en.wikipedia.org/wiki/Blasius_boundary_layer

    A schematic diagram of the Blasius flow profile. The streamwise velocity component () / is shown, as a function of the similarity variable .. Using scaling arguments, Ludwig Prandtl [1] argued that about half of the terms in the Navier-Stokes equations are negligible in boundary layer flows (except in a small region near the leading edge of the plate).

  6. Boundary layer thickness - Wikipedia

    en.wikipedia.org/wiki/Boundary_layer_thickness

    Also of interest is the velocity profile shape which is useful in differentiating laminar from turbulent boundary layer flows. The profile shape refers to the y-behavior of the velocity profile as it transitions to u e (x). Figure 1: Schematic drawing depicting fluid flow entering the bottom half of a 2-D channel with plate-to-plate spacing of H.

  7. Falkner–Skan boundary layer - Wikipedia

    en.wikipedia.org/wiki/Falkner–Skan_boundary_layer

    Falkner and Skan developed the similarity solution for the case of laminar flow along a wedge in 1930. The term similarity refers to the property that the velocity profiles at different positions in the flow look similar apart from scaling factors in the boundary layer thickness and a characteristic boundary layer velocity.

  8. Law of the wall - Wikipedia

    en.wikipedia.org/wiki/Law_of_the_wall

    law of the wall, horizontal velocity near the wall with mixing length model. In fluid dynamics, the law of the wall (also known as the logarithmic law of the wall) states that the average velocity of a turbulent flow at a certain point is proportional to the logarithm of the distance from that point to the "wall", or the boundary of the fluid region.

  9. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    For flow in a pipe of diameter D, experimental observations show that for "fully developed" flow, [n 2] laminar flow occurs when Re D < 2300 and turbulent flow occurs when Re D > 2900. [ 13 ] [ 14 ] At the lower end of this range, a continuous turbulent-flow will form, but only at a very long distance from the inlet of the pipe.