When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Evaluation of binary classifiers - Wikipedia

    en.wikipedia.org/wiki/Evaluation_of_binary...

    These models are designed to assess the likelihood or probability of an instance belonging to different classes. In the context of evaluating probabilistic classifiers, alternative evaluation metrics have been developed to properly assess the performance of these models. These metrics take into account the probabilistic nature of the classifier ...

  3. Precision and recall - Wikipedia

    en.wikipedia.org/wiki/Precision_and_recall

    In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).

  4. F-score - Wikipedia

    en.wikipedia.org/wiki/F-score

    Precision and recall. In statistical analysis of binary classification and information retrieval systems, the F-score or F-measure is a measure of predictive performance. It is calculated from the precision and recall of the test, where the precision is the number of true positive results divided by the number of all samples predicted to be positive, including those not identified correctly ...

  5. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  6. P4-metric - Wikipedia

    en.wikipedia.org/wiki/P4-metric

    P 4 metric [1] [2] (also known as FS or Symmetric F [3]) enables performance evaluation of the binary classifier. It is calculated from precision, recall, specificity and NPV (negative predictive value). P 4 is designed in similar way to F 1 metric, however addressing the criticisms leveled against F 1. It may be perceived as its extension.

  7. Receiver operating characteristic - Wikipedia

    en.wikipedia.org/wiki/Receiver_operating...

    A classification model (classifier or diagnosis [7]) is a mapping of instances between certain classes/groups.Because the classifier or diagnosis result can be an arbitrary real value (continuous output), the classifier boundary between classes must be determined by a threshold value (for instance, to determine whether a person has hypertension based on a blood pressure measure).

  8. Learning curve (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Learning_curve_(machine...

    In machine learning (ML), a learning curve (or training curve) is a graphical representation that shows how a model's performance on a training set (and usually a validation set) changes with the number of training iterations (epochs) or the amount of training data. [1]

  9. Binary classification - Wikipedia

    en.wikipedia.org/wiki/Binary_classification

    When measuring the accuracy of a binary classifier, the simplest way is to count the errors. But in the real world often one of the two classes is more important, so that the number of both of the different types of errors is of interest.