When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Empty product - Wikipedia

    en.wikipedia.org/wiki/Empty_product

    In mathematics, an empty product, or nullary product or vacuous product, is the result of multiplying no factors. It is by convention equal to the multiplicative identity (assuming there is an identity for the multiplication operation in question), just as the empty sum—the result of adding no numbers—is by convention zero, or the additive identity.

  3. Initial and terminal objects - Wikipedia

    en.wikipedia.org/wiki/Initial_and_terminal_objects

    Since the empty category is vacuously a discrete category, a terminal object can be thought of as an empty product (a product is indeed the limit of the discrete diagram {X i}, in general). Dually, an initial object is a colimit of the empty diagram 0 → C and can be thought of as an empty coproduct or categorical sum.

  4. Product (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Product_(mathematics)

    The empty product on numbers and most algebraic structures has the value of 1 (the identity element of multiplication), just like the empty sum has the value of 0 (the identity element of addition). However, the concept of the empty product is more general, and requires special treatment in logic, set theory, computer programming and category ...

  5. Zero-product property - Wikipedia

    en.wikipedia.org/wiki/Zero-product_property

    In algebra, the zero-product property states that the product of two nonzero elements is nonzero. In other words, =, = = This property is also known as the rule of zero product, the null factor law, the multiplication property of zero, the nonexistence of nontrivial zero divisors, or one of the two zero-factor properties. [1]

  6. Talk:Empty product - Wikipedia

    en.wikipedia.org/wiki/Talk:Empty_product

    Second, and empty product is not the result of anything, it is something like "0!" whose value is 1, but it is not identical to 1 (or otherwise conversely "1 is an empty product", which seems a bad formulation). In short, one should make distinction between expressions and there values, and an empty product is an expression.

  7. Intersection (set theory) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(set_theory)

    So the intersection of the empty family should be the universal set (the identity element for the operation of intersection), [4] but in standard set theory, the universal set does not exist. However, when restricted to the context of subsets of a given fixed set X {\displaystyle X} , the notion of the intersection of an empty collection of ...

  8. Product (category theory) - Wikipedia

    en.wikipedia.org/wiki/Product_(category_theory)

    In category theory, the product of two (or more) objects in a category is a notion designed to capture the essence behind constructions in other areas of mathematics such as the Cartesian product of sets, the direct product of groups or rings, and the product of topological spaces.

  9. Variety of finite semigroups - Wikipedia

    en.wikipedia.org/wiki/Variety_of_finite_semigroups

    is closed under taking finite Cartesian products. The first condition is equivalent to stating that V is closed under taking subsemigroups and under taking quotients. The second property implies that the empty product—that is, the trivial semigroup of one element—belongs to each variety. Hence a variety is necessarily non-empty.