Search results
Results From The WOW.Com Content Network
Ears detect changes in sound pressure. Human hearing does not have a flat spectral sensitivity (frequency response) relative to frequency versus amplitude. Humans do not perceive low- and high-frequency sounds as well as they perceive sounds between 3,000 and 4,000 Hz, as shown in the equal-loudness contour. Because the frequency response of ...
A graph of the A-, B-, C- and D-weightings across the frequency range 10 Hz – 20 kHz Video illustrating A-weighting by analyzing a sine sweep (contains audio). A-weighting is a form of frequency weighting and the most commonly used of a family of curves defined in the International standard IEC 61672:2003 and various national standards relating to the measurement of sound pressure level. [1]
This expression shows that phase calibration errors are inversely proportional to frequency and microphone spacing and directly proportional to the ratio of the mean square sound pressure to the sound intensity. If the pressure-to-intensity ratio is large then even a small phase mismatch will lead to significant bias errors.
Sound power or acoustic power is the rate at which sound energy is emitted, reflected, transmitted or received, per unit time. [1] It is defined [2] as "through a surface, the product of the sound pressure, and the component of the particle velocity, at a point on the surface in the direction normal to the surface, integrated over that surface."
Peak-to-peak amplitude (abbreviated p–p or PtP or PtoP) is the change between peak (highest amplitude value) and trough (lowest amplitude value, which can be negative). With appropriate circuitry, peak-to-peak amplitudes of electric oscillations can be measured by meters or by viewing the waveform on an oscilloscope .
A complete model of the perception of loudness will include the integration of SPL by frequency. [5] Historically, loudness was measured using an ear-balancing method with an audiometer in which the amplitude of a sine wave was adjusted by the user to equal the perceived loudness of the sound being evaluated. [6]
The Doppler effect (also Doppler shift) is the change in the frequency of a wave in relation to an observer who is moving relative to the source of the wave. [1] [2] [3] The Doppler effect is named after the physicist Christian Doppler, who described the phenomenon in 1842.
The law has also been interpreted as "a pitch corresponding to a certain frequency can only be heard if the acoustical wave contains power at that frequency." [7] These laws are true to the extent that the ear is sensitive to the frequency and amplitude of the acoustic waves, and further, is able to resolve the differences in their frequency.