Ad
related to: hydrogen atom angular momentum
Search results
Results From The WOW.Com Content Network
"Vector cones" of total angular momentum J (purple), orbital L (blue), and spin S (green). The cones arise due to quantum uncertainty between measuring angular momentum component. Due to the spin–orbit interaction in an atom, the orbital angular momentum no longer commutes with the Hamiltonian, nor does the spin. These therefore change over time.
Depiction of a hydrogen atom showing the diameter as about twice the Bohr model radius. (Image not to scale) A hydrogen atom is an atom of the chemical element hydrogen.The electrically neutral hydrogen atom contains a single positively charged proton in the nucleus, and a single negatively charged electron bound to the nucleus by the Coulomb force.
Starting from the angular momentum quantum rule as Bohr admits is previously given by Nicholson in his 1912 paper, [18] [19] [21] [20] Bohr [11] was able to calculate the energies of the allowed orbits of the hydrogen atom and other hydrogen-like atoms and ions.
Sommerfeld showed that, if electronic orbits are elliptical instead of circular (as in Bohr's model of the atom), the fine-structure of the hydrogen atom can be described. The Bohr–Sommerfeld model added to the quantized angular momentum condition of the Bohr model with a radial quantization (condition by William Wilson , the Wilson ...
This would ultimately become the quantized values of the projection of spin, an intrinsic angular momentum quantum of the electron. In 1927 Ronald Fraser demonstrated that the quantization in the Stern-Gerlach experiment was due to the magnetic moment associated with the electron spin rather than its orbital angular momentum. [7]
In simpler terms, the total angular momentum operator characterizes how a quantum system is changed when it is rotated. The relationship between angular momentum operators and rotation operators is the same as the relationship between Lie algebras and Lie groups in mathematics, as discussed further below. The different types of rotation ...
The trivial case of the angular momentum of a body in an orbit is given by = where is the mass of the orbiting object, is the orbit's frequency and is the orbit's radius.. The angular momentum of a uniform rigid sphere rotating around its axis, instead, is given by = where is the sphere's mass, is the frequency of rotation and is the sphere's radius.
In hyperfine structure, the total angular momentum of the atom is = + , where is the nuclear spin angular momentum and is the total angular momentum of the electron(s). Since F = I + J {\displaystyle ~F=I+J~} has a similar mathematical form as J = L + S , {\displaystyle ~J=L+S~,} it obeys a selection rule table similar to the table above.