Search results
Results From The WOW.Com Content Network
In thermochemistry, the heat of dilution, or enthalpy of dilution, refers to the enthalpy change associated with the dilution process of a component in a solution at a constant pressure. If the initial state of the component is a pure liquid (presuming the solution is liquid), the dilution process is equal to its dissolution process and the ...
An enthalpy–entropy chart, also known as the H–S chart or Mollier diagram, plots the total heat against entropy, [1] describing the enthalpy of a thermodynamic system. [2] A typical chart covers a pressure range of 0.01–1000 bar , and temperatures up to 800 degrees Celsius . [ 3 ]
The path or series of states through which a system passes from an initial equilibrium state to a final equilibrium state [1] and can be viewed graphically on a pressure-volume (P-V), pressure-temperature (P-T), and temperature-entropy (T-s) diagrams. [2] There are an infinite number of possible paths from an initial point to an end point in a ...
The integral heat of dissolution is defined as a process of obtaining a certain amount of solution with a final concentration. The enthalpy change in this process, normalized by the mole number of solute, is evaluated as the molar integral heat of dissolution. Mathematically, the molar integral heat of dissolution is denoted as:
Thermosyphon circulation in a simple solar water heater (not a working model; there is no water supply to replenish the tank when the tap is used). A thermosiphon (or thermosyphon) is a device that employs a method of passive heat exchange based on natural convection, which circulates a fluid without the necessity of a mechanical pump.
The pressure on a pressure-temperature diagram (such as the water phase diagram shown above) is the partial pressure of the substance in question. A phase diagram in physical chemistry , engineering , mineralogy , and materials science is a type of chart used to show conditions (pressure, temperature, etc.) at which thermodynamically distinct ...
This is a heat resistance at the surface between the helium liquids and the solid body of the heat exchanger. It is inversely proportional to T 4 and the heat-exchanging surface area A . In other words: to get the same heat resistance one needs to increase the surface by a factor 10,000 if the temperature reduces by a factor 10.
In thermodynamics, the enthalpy of mixing (also heat of mixing and excess enthalpy) is the enthalpy liberated or absorbed from a substance upon mixing. [1] When a substance or compound is combined with any other substance or compound, the enthalpy of mixing is the consequence of the new interactions between the two substances or compounds. [ 1 ]