Search results
Results From The WOW.Com Content Network
In the study of graph coloring problems in mathematics and computer science, a greedy coloring or sequential coloring [1] is a coloring of the vertices of a graph formed by a greedy algorithm that considers the vertices of the graph in sequence and assigns each vertex its first available color. Greedy colorings can be found in linear time, but ...
Vertex coloring is often used to introduce graph coloring problems, since other coloring problems can be transformed into a vertex coloring instance. For example, an edge coloring of a graph is just a vertex coloring of its line graph, and a face coloring of a plane graph is just a vertex coloring of its dual. However, non-vertex coloring ...
The graph coloring game is a mathematical game related to graph theory. Coloring game problems arose as game-theoretic versions of well-known graph coloring problems. In a coloring game, two players use a given set of colors to construct a coloring of a graph , following specific rules depending on the game we consider.
Hamiltonian coloring, named after William Rowan Hamilton, is a type of graph coloring. Hamiltonian coloring uses a concept called detour distance between two vertices of the graph. [ 1 ] It has many applications in different areas of science and technology.
Download as PDF; Printable version; In other projects ... Pages in category "Graph coloring" The following 82 pages are in this category, out of 82 total ...
Exact coloring of the complete graph K 6. Every n-vertex complete graph K n has an exact coloring with n colors, obtained by giving each vertex a distinct color. Every graph with an n-color exact coloring may be obtained as a detachment of a complete graph, a graph obtained from the complete graph by splitting each vertex into an independent set and reconnecting each edge incident to the ...
These coloring videos are extremely calming. For premium support please call: 800-290-4726 more ways to reach us
The total chromatic number χ″(G) of a graph G is the fewest colors needed in any total coloring of G. The total graph T = T(G) of a graph G is a graph such that (i) the vertex set of T corresponds to the vertices and edges of G and (ii) two vertices are adjacent in T if and only if their corresponding elements are either adjacent or incident ...