Search results
Results From The WOW.Com Content Network
Relativistic quantum chemistry combines relativistic mechanics with quantum chemistry to calculate elemental properties and structure, especially for the heavier elements of the periodic table. A prominent example is an explanation for the color of gold : due to relativistic effects, it is not silvery like most other metals.
General relativity is a theory of gravitation developed by Einstein in the years 1907–1915. The development of general relativity began with the equivalence principle , under which the states of accelerated motion and being at rest in a gravitational field (for example, when standing on the surface of the Earth) are physically identical.
Another popular theory is loop quantum gravity (LQG), which describes quantum properties of gravity and is thus a theory of quantum spacetime. LQG is an attempt to merge and adapt standard quantum mechanics and standard general relativity. This theory describes space as an extremely fine fabric "woven" of finite loops called spin networks.
This theory is applicable to massive particles propagating at all velocities up to those comparable to the speed of light c, and can accommodate massless particles. The theory has application in high energy physics , [ 1 ] particle physics and accelerator physics , [ 2 ] as well as atomic physics , chemistry [ 3 ] and condensed matter physics .
The cosmological constant was originally introduced in Einstein's 1917 paper entitled “The cosmological considerations in the General Theory of Reality”. [2] Einstein included the cosmological constant as a term in his field equations for general relativity because he was dissatisfied that otherwise his equations did not allow for a static universe: gravity would cause a universe that was ...
Therefore, a theory is needed that integrates relativity theory and quantum theory. [3] Such an approach is attempted for instance with loop quantum cosmology, loop quantum gravity, string theory and causal set theory. [4] In quantum cosmology, the universe is treated as a wave function instead of classical spacetime. [5]
In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. [1] [2] [3] In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and special relativity is achieved. [2]
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein 's 1905 paper, On the Electrodynamics of Moving Bodies , the theory is presented as being based on just two postulates : [ p 1 ] [ 1 ] [ 2 ]