Search results
Results From The WOW.Com Content Network
Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.
This alternative definition is significantly more widespread: machine epsilon is the difference between 1 and the next larger floating point number.This definition is used in language constants in Ada, C, C++, Fortran, MATLAB, Mathematica, Octave, Pascal, Python and Rust etc., and defined in textbooks like «Numerical Recipes» by Press et al.
A property of the single- and double-precision formats is that their encoding allows one to easily sort them without using floating-point hardware, as if the bits represented sign-magnitude integers, although it is unclear whether this was a design consideration (it seems noteworthy that the earlier IBM hexadecimal floating-point representation ...
The IEEE standard stores the sign, exponent, and significand in separate fields of a floating point word, each of which has a fixed width (number of bits). The two most commonly used levels of precision for floating-point numbers are single precision and double precision.
The number 0.15625 represented as a single-precision IEEE 754-1985 floating-point number. See text for explanation. The three fields in a 64bit IEEE 754 float. Floating-point numbers in IEEE 754 format consist of three fields: a sign bit, a biased exponent, and a fraction. The following example illustrates the meaning of each.
(NB. This website contains open source floating-point IP cores for the implementation of floating-point operators in FPGA or ASIC devices. The project double_fpu contains verilog source code of a double-precision floating-point unit. The project fpuvhdl contains vhdl source code of a single-precision floating-point unit.) Fleegal, Eric (2004).
To convert a fixed-point number to floating-point, one may convert the integer to floating-point and then divide it by the scaling factor S. This conversion may entail rounding if the integer's absolute value is greater than 2 24 (for binary single-precision IEEE floating point) or of 2 53 (for double-precision).
Double-precision floating-point format; Quadruple-precision floating-point format; Octuple-precision floating-point format; Of these, octuple-precision format is rarely used. The single- and double-precision formats are most widely used and supported on nearly all platforms. The use of half-precision format has been increasing especially in the ...