Search results
Results From The WOW.Com Content Network
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure. Units of solubility are given in grams of substance per 100 millilitres of water (g/100 ml), unless shown otherwise. The substances are listed in alphabetical order.
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
‡ Second column of table indicates solubility at each given temperature in volume of CO 2 as it would be measured at 101.3 kPa and 0 °C per volume of water. The solubility is given for "pure water", i.e., water which contain only CO 2. This water is going to be acidic. For example, at 25 °C the pH of 3.9 is expected (see carbonic acid). At ...
The chart shows solubility curves for some typical solid inorganic salts in liquid water (temperature is in degrees Celsius, i.e. kelvins minus 273.15). [14] Many salts behave like barium nitrate and disodium hydrogen arsenate, and show a large increase in solubility with temperature (ΔH > 0).
However, for aqueous solutions, the Henry's law solubility constant for many species goes through a minimum. For most permanent gases, the minimum is below 120 °C. Often, the smaller the gas molecule (and the lower the gas solubility in water), the lower the temperature of the maximum of the Henry's law constant.
This Wikipedia page provides a comprehensive list of boiling and freezing points for various solvents.
When supplying a temperature value (the numerical value in either °C, °F or K), the infobox will calculate and present all three temperatures. Only one of the three _C, _F, _K values may be entered. E.g.: |MeltingPtC=100 shows: 100 °C; 212 °F; 373 K. To show a temperature range, simply add the corresponding _CH high value (_FH, _KH). E.g.:
The pressure on a pressure-temperature diagram (such as the water phase diagram shown above) is the partial pressure of the substance in question. A phase diagram in physical chemistry , engineering , mineralogy , and materials science is a type of chart used to show conditions (pressure, temperature, etc.) at which thermodynamically distinct ...