Search results
Results From The WOW.Com Content Network
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.
If you square the last three digits and subtract the square of the first three digits, you also get back a cyclic permutation of the number. [citation needed] 857 2 = 734449 142 2 = 20164 734449 − 20164 = 714285. It is the repeating part in the decimal expansion of the rational number 1 / 7 = 0. 142857.
Some real numbers have decimal expansions that eventually get into loops, endlessly repeating a sequence of one or more digits: 1 ⁄ 3 = 0.33333... 1 ⁄ 7 = 0.142857142857... 1318 ⁄ 185 = 7.1243243243... Every time this happens the number is still a rational number (i.e. can alternatively be represented as a ratio of an integer and a ...
Rules for calculating the periods of repeating decimals from rational fractions were given by James Whitbread Lee Glaisher in 1878. [5] For a prime p, the period of its reciprocal divides p − 1. [6] The sequence of recurrence periods of the reciprocal primes (sequence A002371 in the OEIS) appears in the 1973 Handbook of Integer Sequences.
Stylistic impression of the repeating decimal 0.9999..., representing the digit 9 repeating infinitely ... So the real number 0.999... is the set of rational numbers ...
Not all rational numbers have a finite representation in the decimal notation. For example, the rational number corresponds to 0.333... with an infinite number of 3s. The shortened notation for this type of repeating decimal is 0. 3. [102] Every repeating decimal expresses a rational number. [103]
Angel numbers are repeating number sequences, often used as a guide for deeper spiritual exploration. These sequences can range from 000 to 999 and have a distinct meaning and energy.
A vinculum can indicate the repetend of a repeating decimal value: 1 ⁄ 7 = 0. 142857 = 0.1428571428571428571... A vinculum can indicate the complex conjugate of a complex number :