Search results
Results From The WOW.Com Content Network
In propositional logic, tautology is either of two commonly used rules of replacement. [ 1 ] [ 2 ] [ 3 ] The rules are used to eliminate redundancy in disjunctions and conjunctions when they occur in logical proofs .
A minimal tautology is a tautology that is not the instance of a shorter tautology. ( A ∨ B ) → ( A ∨ B ) {\displaystyle (A\lor B)\to (A\lor B)} is a tautology, but not a minimal one, because it is an instantiation of C → C {\displaystyle C\to C} .
Inspection of the tabular derivations for NAND and NOR, under each assignment of logical values to the functional arguments p and q, produces the identical patterns of functional values for ¬(p ∧ q) as for (¬p) ∨ (¬q), and for ¬(p ∨ q) as for (¬p) ∧ (¬q). Thus the first and second expressions in each pair are logically equivalent ...
With this premise, we also conclude that q=T, p∨q=T, etc. as shown by columns 9–15. The column-11 operator (IF/THEN), shows Modus ponens rule: when p→q=T and p=T only one line of the truth table (the first) satisfies these two conditions. On this line, q is also true. Therefore, whenever p → q is true and p is true, q must also be true.
Some of these connectives may be defined in terms of others: for instance, implication, p → q, may be defined in terms of disjunction and negation, as ¬p ∨ q; [75] and disjunction may be defined in terms of negation and conjunction, as ¬(¬p ∧ ¬q). [51]
Tautological consequence can also be defined as ∧ ∧ ... ∧ → is a substitution instance of a tautology, with the same effect. [2]It follows from the definition that if a proposition p is a contradiction then p tautologically implies every proposition, because there is no truth valuation that causes p to be true and so the definition of tautological implication is trivially satisfied.
In logic, a set of symbols is commonly used to express logical representation. The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics.
Formulas and are logically equivalent if and only if the statement of their material equivalence is a tautology. [ 2 ] The material equivalence of p {\displaystyle p} and q {\displaystyle q} (often written as p ↔ q {\displaystyle p\leftrightarrow q} ) is itself another statement in the same object language as p {\displaystyle p} and q ...