Search results
Results From The WOW.Com Content Network
Algebra is the branch of mathematics that studies certain abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic operations other than the standard arithmetic operations, such as addition and multiplication.
Most contemporary reference works define mathematics by summarizing its main topics and methods: The abstract science which investigates deductively the conclusions implicit in the elementary conceptions of spatial and numerical relations, and which includes as its main divisions geometry, arithmetic, and algebra. [16] Oxford English Dictionary ...
The Math Myth describes the approach of the contemporary American education system towards mathematics as a "self-delusion", especially critiquing the Common Core standards and the role of obtuse and abstract mathematics in impeding the mathematical literacy of students, arguing that current methods lead to higher drop out rates.
An algebraic theory consists of a collection of n-ary functional terms with additional rules (axioms).. For example, the theory of groups is an algebraic theory because it has three functional terms: a binary operation a × b, a nullary operation 1 (neutral element), and a unary operation x ↦ x −1 with the rules of associativity, neutrality and inverses respectively.
The assertion that Q is necessary for P is colloquially equivalent to "P cannot be true unless Q is true" or "if Q is false, then P is false". [9] [1] By contraposition, this is the same thing as "whenever P is true, so is Q". The logical relation between P and Q is expressed as "if P, then Q" and denoted "P ⇒ Q" (P implies Q).
A great many professional mathematicians take no interest in a definition of mathematics, or consider it undefinable. There is not even consensus on whether mathematics is an art or a science. Some just say, "mathematics is what mathematicians do". [166] [167] A common approach is to define mathematics by its object of study. [168] [169] [170 ...
Also called infinitesimal calculus A foundation of calculus, first developed in the 17th century, that makes use of infinitesimal numbers. Calculus of moving surfaces an extension of the theory of tensor calculus to include deforming manifolds. Calculus of variations the field dedicated to maximizing or minimizing functionals. It used to be called functional calculus. Catastrophe theory a ...
In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product.Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear".