When.com Web Search

  1. Ad

    related to: finding tangent to a circle equation calculator with center and radius

Search results

  1. Results From The WOW.Com Content Network
  2. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    In this case the circle with radius zero is a double point, and thus any line passing through it intersects the point with multiplicity two, hence is "tangent". If one circle has radius zero, a bitangent line is simply a line tangent to the circle and passing through the point, and is counted with multiplicity two.

  3. Power of a point - Wikipedia

    en.wikipedia.org/wiki/Power_of_a_point

    All tangent circles to the given circles can be found by varying line . Positions of the centers Circles tangent to two circles. If is the center and the radius of the circle, that is tangent to the given circles at the points ,, then:

  4. Method of normals - Wikipedia

    en.wikipedia.org/wiki/Method_of_normals

    The method hinges on the observation that the radius of a circle is always normal to the circle itself. With this in mind Descartes would construct a circle that was tangent to a given curve. He could then use the radius at the point of intersection to find the slope of a normal line, and from this one can easily find the slope of a tangent line.

  5. Osculating circle - Wikipedia

    en.wikipedia.org/wiki/Osculating_circle

    The circle with center at Q and with radius R is called the osculating circle to the curve γ at the point P. If C is a regular space curve then the osculating circle is defined in a similar way, using the principal normal vector N. It lies in the osculating plane, the plane spanned by the tangent and principal normal vectors T and N at the ...

  6. Radical axis - Wikipedia

    en.wikipedia.org/wiki/Radical_axis

    The tangent lines must be equal in length for any point on the radical axis: | | = | |. If P, T 1, T 2 lie on a common tangent, then P is the midpoint of ⁠ ¯.. In Euclidean geometry, the radical axis of two non-concentric circles is the set of points whose power with respect to the circles are equal.

  7. Polar coordinate system - Wikipedia

    en.wikipedia.org/wiki/Polar_coordinate_system

    The general equation for a circle with a center at (,) and radius a is ⁡ + =. This can be simplified in various ways, to conform to more specific cases, such as the equation r ( φ ) = a {\displaystyle r(\varphi )=a} for a circle with a center at the pole and radius a .

  8. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...

  9. Contact (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Contact_(mathematics)

    A circle with 1st-order contact (tangent) A circle with 2nd-order contact (osculating) A circle with 3rd-order contact at a vertex of a curve. For each point S(t) on a smooth plane curve S, there is exactly one osculating circle, whose radius is the reciprocal of κ(t), the curvature of S at t.