When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    The black boundaries of the colored regions are conic sections. Not shown is the other half of the hyperbola, which is on the unshown other half of the double cone. Conic sections visualized with torch light This diagram clarifies the different angles of the cutting planes that result in the different properties of the three types of conic section.

  3. Degenerate conic - Wikipedia

    en.wikipedia.org/wiki/Degenerate_conic

    In the real plane, a degenerate conic can be two lines that may or may not be parallel, a single line (either two coinciding lines or the union of a line and the line at infinity), a single point (in fact, two complex conjugate lines), or the null set (twice the line at infinity or two parallel complex conjugate lines). All these degenerate ...

  4. Cramer's paradox - Wikipedia

    en.wikipedia.org/wiki/Cramer's_paradox

    A single point is not sufficient to define a line (two are needed); through the point of intersection there pass not only the two given lines but an infinite number of other lines as well. Two nondegenerate conics intersect in at most at four finite points in the real plane, which is precisely the number given as a maximum by Bézout's theorem.

  5. Steiner conic - Wikipedia

    en.wikipedia.org/wiki/Steiner_conic

    It is usual, when dealing with dual and common conic sections, to call the common conic section a point conic and the dual conic a line conic. In the case that the underlying field has = all the tangents of a point conic intersect in a point, called the knot (or nucleus) of the conic. Thus, the dual of a non-degenerate point conic is a subset ...

  6. Degeneracy (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Degeneracy_(mathematics)

    For example, right triangles, isosceles triangles and equilateral triangles are non-generic and non-degenerate. In fact, degenerate cases often correspond to singularities, either in the object or in some configuration space. For example, a conic section is degenerate if and only if it has singular points (e.g., point, line, intersecting lines ...

  7. Five points determine a conic - Wikipedia

    en.wikipedia.org/wiki/Five_points_determine_a_conic

    Being tangent to five given lines also determines a conic, by projective duality, but from the algebraic point of view tangency to a line is a quadratic constraint, so naive dimension counting yields 2 5 = 32 conics tangent to five given lines, of which 31 must be ascribed to degenerate conics, as described in fudge factors in enumerative ...

  8. Linear system of conics - Wikipedia

    en.wikipedia.org/wiki/Linear_system_of_conics

    There are 8 types of linear systems of conics over the complex numbers, depending on intersection multiplicity at the base points, which divide into 13 types over the real numbers, depending on whether the base points are real or imaginary; this is discussed in and illustrated in .

  9. Enumerative geometry - Wikipedia

    en.wikipedia.org/wiki/Enumerative_geometry

    As an example, count the conic sections tangent to five given lines in the projective plane. [4] The conics constitute a projective space of dimension 5, taking their six coefficients as homogeneous coordinates, and five points determine a conic, if the points are in general linear position, as passing through a given point imposes a linear ...