Ad
related to: fixed point number definition math examples for kids
Search results
Results From The WOW.Com Content Network
A fixed-point theorem is a result saying that at least one fixed point exists, under some general condition. [1] For example, the Banach fixed-point theorem (1922) gives a general criterion guaranteeing that, if it is satisfied, fixed-point iteration will always converge to a fixed point.
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
In numerical analysis, fixed-point iteration is a method of computing fixed points of a function.. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is + = (), =,,, … which gives rise to the sequence,,, … of iterated function applications , (), (()), … which is hoped to converge to a point .
The Banach fixed-point theorem (1922) gives a general criterion guaranteeing that, if it is satisfied, the procedure of iterating a function yields a fixed point. [2]By contrast, the Brouwer fixed-point theorem (1911) is a non-constructive result: it says that any continuous function from the closed unit ball in n-dimensional Euclidean space to itself must have a fixed point, [3] but it doesn ...
In mathematics, the common fixed point problem is the conjecture that, for any two continuous functions that map the unit interval into itself and commute under functional composition, there must be a point that is a fixed point of both functions.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Fixed point, a benchmark (surveying) used by geodesists; Fixed point join, also called a recursive join; Fixed point, in quantum field theory, a coupling where the beta function vanishes – see renormalization group § Conformal symmetry; Temperature reference point, usually defined by a phase change or triple point.
Fixed-point computation refers to the process of computing an exact or approximate fixed point of a given function. [1] In its most common form, the given function f {\displaystyle f} satisfies the condition to the Brouwer fixed-point theorem : that is, f {\displaystyle f} is continuous and maps the unit d -cube to itself.