Search results
Results From The WOW.Com Content Network
In mathematics, a fixed point (sometimes shortened to fixpoint), also known as an invariant point, is a value that does not change under a given transformation. Specifically, for functions, a fixed point is an element that is mapped to itself by the function. Any set of fixed points of a transformation is also an invariant set.
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
In numerical analysis, fixed-point iteration is a method of computing fixed points of a function.. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is + = (), =,,, … which gives rise to the sequence,,, … of iterated function applications , (), (()), … which is hoped to converge to a point .
The Banach fixed-point theorem (1922) gives a general criterion guaranteeing that, if it is satisfied, the procedure of iterating a function yields a fixed point. [2]By contrast, the Brouwer fixed-point theorem (1911) is a non-constructive result: it says that any continuous function from the closed unit ball in n-dimensional Euclidean space to itself must have a fixed point, [3] but it doesn ...
In mathematics, the common fixed point problem is the conjecture that, for any two continuous functions that map the unit interval into itself and commute under functional composition, there must be a point that is a fixed point of both functions.
The function f(x) = x 2 − 4 has two fixed points, shown as the intersection with the blue line; its least one is at 1/2 − √ 17 /2.. In order theory, a branch of mathematics, the least fixed point (lfp or LFP, sometimes also smallest fixed point) of a function from a partially ordered set ("poset" for short) to itself is the fixed point which is less than each other fixed point, according ...
X is a fixed-point of if and only if x is a root of , and x is an ε-residual fixed-point of if and only if x is an ε-root of . Chen and Deng [ 18 ] show that the discrete variants of these problems are computationally equivalent: both problems require Θ ( n d − 1 ) {\displaystyle \Theta (n^{d-1})} function evaluations.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more