Search results
Results From The WOW.Com Content Network
The inverse function theorem can also be generalized to differentiable maps between Banach spaces X and Y. [20] Let U be an open neighbourhood of the origin in X and F : U → Y {\displaystyle F:U\to Y\!} a continuously differentiable function, and assume that the Fréchet derivative d F 0 : X → Y {\displaystyle dF_{0}:X\to Y\!} of F at 0 is ...
The graphs of y = f(x) and y = f −1 (x). The dotted line is y = x. If f is invertible, then the graph of the function = is the same as the graph of the equation = (). This is identical to the equation y = f(x) that defines the graph of f, except that the roles of x and y have
In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...
The reciprocal function: y = 1/x.For every x except 0, y represents its multiplicative inverse. The graph forms a rectangular hyperbola.. In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/x or x −1, is a number which when multiplied by x yields the multiplicative identity, 1.
One has always X ⊆ f −1 (f(X)) and f(f −1 (Y)) ⊆ Y, where f(X) is the image of X and f −1 (Y) is the preimage of Y under f. If f is injective, then X = f −1 (f(X)), and if f is surjective, then f(f −1 (Y)) = Y. For every function h : X → Y, one can define a surjection H : X → h(X) : x → h(x) and an injection I : h(X) → Y ...
If the assertions about analyticity are omitted, the formula is also valid for formal power series and can be generalized in various ways: It can be formulated for functions of several variables; it can be extended to provide a ready formula for F(g(z)) for any analytic function F; and it can be generalized to the case ′ =, where the inverse ...
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
A set-valued function φ from the set X to the set Y is some rule that associates one or more points in Y with each point in X. Formally it can be seen just as an ordinary function from X to the power set of Y , written as φ : X → 2 Y , such that φ ( x ) is non-empty for every x ∈ X {\displaystyle x\in X} .