Ad
related to: pythagorean theorem calculus
Search results
Results From The WOW.Com Content Network
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin( α + β ) = sin α cos β + cos α sin ...
Noether's theorem (Lie groups, calculus of variations, differential invariants, physics) Noether's second theorem (calculus of variations, physics) Noether's theorem on rationality for surfaces (algebraic surfaces) Non-squeezing theorem (symplectic geometry) Norton's theorem (electrical networks) Novikov's compact leaf theorem
Trigonometry (from Ancient Greek τρίγωνον (trígōnon) 'triangle' and μέτρον (métron) 'measure') [1] is a branch of mathematics concerned with relationships between angles and side lengths of triangles.
The Pythagorean theorem: The sum of the areas of the two squares on the legs (a and b) equals the area of the square on the hypotenuse (c). Although Pythagoras is most famous today for his alleged mathematical discoveries, [ 132 ] [ 207 ] classical historians dispute whether he himself ever actually made any significant contributions to the field.
Trigonometric functions of inverse trigonometric functions are tabulated below. A quick way to derive them is by considering the geometry of a right-angled triangle, with one side of length 1 and another side of length , then applying the Pythagorean theorem and definitions of the
There are several equivalent ways for defining trigonometric functions, and the proofs of the trigonometric identities between them depend on the chosen definition. The oldest and most elementary definitions are based on the geometry of right triangles and the ratio between their sides.
By the Pythagorean theorem we have b 2 = h 2 + d 2 and a 2 = h 2 + (c − d) 2 according to the figure at the right. Subtracting these yields a 2 − b 2 = c 2 − 2cd. This equation allows us to express d in terms of the sides of the triangle: = + +.