When.com Web Search

  1. Ad

    related to: methods of writing sets of elements in nature and function

Search results

  1. Results From The WOW.Com Content Network
  2. Set-builder notation - Wikipedia

    en.wikipedia.org/wiki/Set-builder_notation

    Sets defined by a predicate. Set-builder notation can be used to describe a set that is defined by a predicate, that is, a logical formula that evaluates to true for an element of the set, and false otherwise. [2] In this form, set-builder notation has three parts: a variable, a colon or vertical bar separator, and a predicate.

  3. Set theory - Wikipedia

    en.wikipedia.org/wiki/Set_theory

    Set theory begins with a fundamental binary relation between an object o and a set A. If o is a member (or element) of A, the notation o ∈ A is used. A set is described by listing elements separated by commas, or by a characterizing property of its elements, within braces { }. [5]

  4. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    t. e. In mathematics, a function from a set X to a set Y assigns to each element of X exactly one element of Y. [1] The set X is called the domain of the function [2] and the set Y is called the codomain of the function. [3] Functions were originally the idealization of how a varying quantity depends on another quantity.

  5. Complement (set theory) - Wikipedia

    en.wikipedia.org/wiki/Complement_(set_theory)

    If A is a set, then the absolute complement of A (or simply the complement of A) is the set of elements not in A (within a larger set that is implicitly defined). In other words, let U be a set that contains all the elements under study; if there is no need to mention U, either because it has been previously specified, or it is obvious and unique, then the absolute complement of A is the ...

  6. Recursion - Wikipedia

    en.wikipedia.org/wiki/Recursion

    In set theory, this is a theorem guaranteeing that recursively defined functions exist. Given a set X, an element a of X and a function f: X → X, the theorem states that there is a unique function : (where denotes the set of natural numbers including zero) such that

  7. Set (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Set_(mathematics)

    A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...

  8. Enumeration - Wikipedia

    en.wikipedia.org/wiki/Enumeration

    Enumeration. An enumeration is a complete, ordered listing of all the items in a collection. The term is commonly used in mathematics and computer science to refer to a listing of all of the elements of a set. The precise requirements for an enumeration (for example, whether the set must be finite, or whether the list is allowed to contain ...

  9. Element (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Element_(mathematics)

    In the above examples, the cardinality of the set A is 4, while the cardinality of set B and set C are both 3. An infinite set is a set with an infinite number of elements, while a finite set is a set with a finite number of elements. The above examples are examples of finite sets.