Search results
Results From The WOW.Com Content Network
Both DNA and RNA are nucleic acids, which use base pairs of nucleotides as a complementary language. During transcription, a DNA sequence is read by an RNA polymerase, which produces a complementary, antiparallel RNA strand called a primary transcript. In virology, the term transcription is used when referring to mRNA synthesis from a viral RNA ...
Micrograph of gene transcription of ribosomal RNA illustrating the growing primary transcripts. A primary transcript is the single-stranded ribonucleic acid product synthesized by transcription of DNA, and processed to yield various mature RNA products such as mRNAs, tRNAs, and rRNAs.
Without the need of a primer, RNA polymerase can initiate the synthesis of a new RNA chain using the template DNA strand to guide ribonucleotide selection and polymerization chemistry. [1] However, many of the initiated syntheses are aborted before the transcripts reach a significant length (~10 nucleotides).
RNA-dependent DNA polymerases are a specialized class of polymerases that copy the sequence of an RNA strand into DNA. They include reverse transcriptase, which is a viral enzyme involved in the infection of cells by retroviruses, and telomerase, which is required for the replication of telomeres.
In nature complementarity is the base principle of DNA replication and transcription as it is a property shared between two DNA or RNA sequences, such that when they are aligned antiparallel to each other, the nucleotide bases at each position in the sequences will be complementary, much like looking in the mirror and seeing the reverse of things.
Transcription (biology), the copying of DNA into RNA, often the first step in gene expression Abortive transcription, the generation of very short RNA transcripts which are not used and rapidly degraded; Bacterial transcription, the generation of RNA transcripts of the genetic material in bacteria
DNA is defined by containing 2'-deoxy-ribose nucleic acid while RNA is defined by containing ribose nucleic acid. [1] In some occasions, DNA and RNA may contain some minor bases. Methylated forms of the major bases are most common in DNA. In viral DNA, some bases may be hydroxymethylated or glucosylated.
The RNA purification process is different for short and long RNAs. [16] This step is usually followed by an assessment of RNA quality, with the purpose of avoiding contaminants such as DNA or technical contaminants related to sample processing. RNA quality is measured using UV spectrometry with an absorbance peak of 260 nm. [23]