Search results
Results From The WOW.Com Content Network
The differentiation of stem cell precursors into specialized neurons gives rise to the formation of synapses and neural circuits, which is key to the principle of plasticity. [16] During this pivotal point in development, consequent developmental processes like the differentiation and specialization of neurons are highly sensitive to exogenous ...
Neuroplasticity, also known as neural plasticity or just plasticity, is the ability of neural networks in the brain to change through growth and reorganization. . Neuroplasticity refers to the brain's ability to reorganize and rewire its neural connections, enabling it to adapt and function in ways that differ from
Both structures exhibit localized vesicles at the active sites, clustered receptors at the post-synaptic membrane, and glial cells that encapsulate the entire synaptic cleft. In terms of synaptogenesis, both synapses exhibit differentiation of the pre- and post-synaptic membranes following initial contact between the two cells.
Lashley contributed to psychology and neuropsychology in a number of ways. First, his publication, Brain Mechanisms and Intelligence: A Quantitative Study of Injuries to the Brain (1929) found evidence to suggest the idea of localization was wrong and brought to life the idea that the brain and its multiple parts work together for memory and ...
Cell growth refers to an increase in the total mass of a cell, including both cytoplasmic, nuclear and organelle volume. [1] Cell growth occurs when the overall rate of cellular biosynthesis (production of biomolecules or anabolism) is greater than the overall rate of cellular degradation (the destruction of biomolecules via the proteasome, lysosome or autophagy, or catabolism).
When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A’s efficiency, as one of the cells firing B, is increased. [1]: 62 The theory is often summarized as "Neurons that fire together, wire together."
Nerve growth factor (NGF), the prototypical growth factor, is a protein secreted by a neuron's target cell. NGF is critical for the survival and maintenance of sympathetic and sensory neurons. NGF is released from the target cells, binds to and activates its high affinity receptor TrkA on the neuron, and is internalized into the responsive neuron.
Neuronal precursor cells proliferate in the ventricular zone of the developing neocortex, where the principal neural stem cell is the radial glial cell. The first postmitotic cells must leave the stem cell niche and migrate outward to form the preplate, which is destined to become Cajal–Retzius cells and subplate neurons. These cells do so by ...