When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Predictive maintenance - Wikipedia

    en.wikipedia.org/wiki/Predictive_maintenance

    The use of Model Based Condition Monitoring for predictive maintenance programs is becoming increasingly popular over time. This method involves spectral analysis on the motor's current and voltage signals and then compares the measured parameters to a known and learned model of the motor to diagnose various electrical and mechanical anomalies.

  3. Predictive analytics - Wikipedia

    en.wikipedia.org/wiki/Predictive_analytics

    Predictive modeling is a statistical technique used to predict future behavior. It utilizes predictive models to analyze a relationship between a specific unit in a given sample and one or more features of the unit. The objective of these models is to assess the possibility that a unit in another sample will display the same pattern.

  4. Failure mode, effects, and criticality analysis - Wikipedia

    en.wikipedia.org/wiki/Failure_Mode,_Effects,_and...

    In the present era of Industry 4.0, the industries are implementing a predictive maintenance strategy for their mechanical systems. The FMECA is widely used for the failure mode identification and prioritization of mechanical systems and their subsystems for predictive maintenance .

  5. Intelligent maintenance system - Wikipedia

    en.wikipedia.org/wiki/Intelligent_Maintenance_System

    An intelligent maintenance system is a system that uses data analysis and decision support tools to predict and prevent the potential failure of machines. The recent advancement in information technology, computers, and electronics have facilitated the design and implementation of such systems.

  6. Predictive learning - Wikipedia

    en.wikipedia.org/wiki/Predictive_learning

    Predictive learning is a machine learning (ML) technique where an artificial intelligence model is fed new data to develop an understanding of its environment, capabilities, and limitations. This technique finds application in many areas, including neuroscience , business , robotics , and computer vision .

  7. Predictive modelling - Wikipedia

    en.wikipedia.org/wiki/Predictive_modelling

    Predictive modeling in trading is a modeling process wherein the probability of an outcome is predicted using a set of predictor variables. Predictive models can be built for different assets like stocks, futures, currencies, commodities etc. [ citation needed ] Predictive modeling is still extensively used by trading firms to devise strategies ...

  8. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  9. Predictive Model Markup Language - Wikipedia

    en.wikipedia.org/wiki/Predictive_Model_Markup...

    PMML provides a way for analytic applications to describe and exchange predictive models produced by data mining and machine learning algorithms. It supports common models such as logistic regression and other feedforward neural networks. Version 0.9 was published in 1998. [1] Subsequent versions have been developed by the Data Mining Group. [2]