Search results
Results From The WOW.Com Content Network
Graph = with the -axis as the horizontal axis and the -axis as the vertical axis.The -intercept of () is indicated by the red dot at (=, =).. In analytic geometry, using the common convention that the horizontal axis represents a variable and the vertical axis represents a variable , a -intercept or vertical intercept is a point where the graph of a function or relation intersects the -axis of ...
The y-intercept point (,) = (,) corresponds to buying only 4 kg of sausage; while the x-intercept point (,) = (,) corresponds to buying only 2 kg of salami. Note that the graph includes points with negative values of x or y , which have no meaning in terms of the original variables (unless we imagine selling meat to the butcher).
Vertical line of equation x = a Horizontal line of equation y = b. Each solution (x, y) of a linear equation + + = may be viewed as the Cartesian coordinates of a point in the Euclidean plane. With this interpretation, all solutions of the equation form a line, provided that a and b are not both zero. Conversely, every line is the set of all ...
Yr = A 1.x + K 1 for x < BP (breakpoint) Yr = A 2.x + K 2 for x > BP (breakpoint) where: Yr is the expected (predicted) value of y for a certain value of x; A 1 and A 2 are regression coefficients (indicating the slope of the line segments); K 1 and K 2 are regression constants (indicating the intercept at the y-axis).
This is not always the case: the trivial equation x = x specifies the entire plane, and the equation x 2 + y 2 = 0 specifies only the single point (0, 0). In three dimensions, a single equation usually gives a surface , and a curve must be specified as the intersection of two surfaces (see below), or as a system of parametric equations . [ 18 ]
In mathematics, the term linear function refers to two distinct but related notions: [1] In calculus and related areas, a linear function is a function whose graph is a straight line, that is, a polynomial function of degree zero or one. [2] For distinguishing such a linear function from the other concept, the term affine function is often used ...
(x 0, y 0, z 0) is any point on the line. a , b , and c are related to the slope of the line, such that the direction vector ( a , b , c ) is parallel to the line. Parametric equations for lines in higher dimensions are similar in that they are based on the specification of one point on the line and a direction vector.
A log–log plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).