Ad
related to: basal ganglia indirect pathway location
Search results
Results From The WOW.Com Content Network
The indirect pathway, sometimes known as the indirect pathway of movement, is a neuronal circuit through the basal ganglia and several associated nuclei within the central nervous system (CNS) which helps to prevent unwanted muscle contractions from competing with voluntary movements. [1] It operates in conjunction with the direct pathway.
Green arrows refer to excitatory glutamatergic pathways, red arrows refer to inhibitory GABAergic pathways and turquoise arrows refer to dopaminergic pathways that are excitatory on the direct pathway and inhibitory on the indirect pathway. The basal ganglia is a collective group of structures in the brain.
The basal ganglia (BG) or basal nuclei ... The GPi receives signals from the striatum via the "direct" and "indirect" pathways. Pallidal neurons operate using a ...
Indirect and direct pathways.Some neuroanatomy is excluded for simplicity.. The two major input structures of the circuit are the striatum and the subthalamic nucleus (STN). The striatum receives inputs from both the cortex and the pars compacta of the substantia nigra (SNc), while the STN only receives cortical inputs.
The indirect pathway also receives excitatory input from various brain regions. Indirect pathway medium spiny neurons project to the external segment of the globus pallidus (GPe). Like the GPi, the GPe is a tonically active inhibitory nucleus.
The nucleus accumbens receives dopaminergic inputs from the ventral tegmental area, which connect via the mesolimbic pathway. The nucleus accumbens is often described as one part of a cortico-basal ganglia-thalamo-cortical loop. [19] Dopaminergic inputs from the VTA modulate the activity of GABAergic neurons within the nucleus accumbens.
This multisynaptic indirect striatopallidal pathway allows for regulated excitatory input from the subthalamic nucleus to the GPi and substantia nigra pars reticulata. This combines with direct pathway inhibition in the GPi, allowing for fine tuned basal ganglia output, and more controlled movement.
However, the second model proposes that the actions do not originate in the basal ganglia, and instead originate in the cortex and are selected by the basal ganglia. This model proposes that the direct pathway controls appropriate behavior and the indirect suppresses actions not suitable for the situation.