When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Material implication (rule of inference) - Wikipedia

    en.wikipedia.org/wiki/Material_implication_(rule...

    In propositional logic, material implication [1] [2] is a valid rule of replacement that allows a conditional statement to be replaced by a disjunction in which the antecedent is negated. The rule states that P implies Q is logically equivalent to not- P {\displaystyle P} or Q {\displaystyle Q} and that either form can replace the other in ...

  3. Implicational propositional calculus - Wikipedia

    en.wikipedia.org/wiki/Implicational...

    Implication alone is not functionally complete as a logical operator because one cannot form all other two-valued truth functions from it.. For example, the two-place truth function that always returns false is not definable from → and arbitrary propositional variables: any formula constructed from → and propositional variables must receive the value true when all of its variables are ...

  4. List of rules of inference - Wikipedia

    en.wikipedia.org/wiki/List_of_rules_of_inference

    A set of rules can be used to infer any valid conclusion if it is complete, while never inferring an invalid conclusion, if it is sound. A sound and complete set of rules need not include every rule in the following list, as many of the rules are redundant, and can be proven with the other rules.

  5. Material conditional - Wikipedia

    en.wikipedia.org/wiki/Material_conditional

    The material conditional (also known as material implication) is an operation commonly used in logic. When the conditional symbol → {\displaystyle \rightarrow } is interpreted as material implication, a formula P → Q {\displaystyle P\rightarrow Q} is true unless P {\displaystyle P} is true and Q {\displaystyle Q} is false.

  6. Rule of inference - Wikipedia

    en.wikipedia.org/wiki/Rule_of_inference

    Usually only rules that are recursive are important; i.e. rules such that there is an effective procedure for determining whether any given formula is the conclusion of a given set of formulae according to the rule. An example of a rule that is not effective in this sense is the infinitary ω-rule. [1]

  7. Modus ponens - Wikipedia

    en.wikipedia.org/wiki/Modus_ponens

    The cut-elimination theorem for a calculus says that every proof involving Cut can be transformed (generally, by a constructive method) into a proof without Cut, and hence that Cut is admissible. The Curry–Howard correspondence between proofs and programs relates modus ponens to function application : if f is a function of type P → Q and x ...

  8. Associative property - Wikipedia

    en.wikipedia.org/wiki/Associative_property

    1.000 2 ×2 0 + (1.000 2 ×2 0 + 1.000 2 ×2 4) = 1.000 2 ×2 0 + 1.000 2 ×2 4 = 1.00 0 2 ×2 4 Even though most computers compute with 24 or 53 bits of significand, [ 8 ] this is still an important source of rounding error, and approaches such as the Kahan summation algorithm are ways to minimise the errors.

  9. Modus tollens - Wikipedia

    en.wikipedia.org/wiki/Modus_tollens

    Every use of modus tollens can be converted to a use of modus ponens and one use of transposition to the premise which is a material implication. For example: If P, then Q. (premise – material implication) If not Q, then not P. (derived by transposition) Not Q. (premise) Therefore, not P. (derived by modus ponens)