Search results
Results From The WOW.Com Content Network
The graph crosses the x-axis at roots of odd multiplicity and does not cross it at roots of even multiplicity. A non-zero polynomial function is everywhere non-negative if and only if all its roots have even multiplicity and there exists an x 0 {\displaystyle x_{0}} such that f ( x 0 ) > 0 {\displaystyle f(x_{0})>0} .
Let X be a Riemann surface.Then the intersection number of two closed curves on X has a simple definition in terms of an integral. For every closed curve c on X (i.e., smooth function :), we can associate a differential form of compact support, the Poincaré dual of c, with the property that integrals along c can be calculated by integrals over X:
The notion of the multiplicity of a module is a generalization of the degree of a projective variety. By Serre's intersection formula, it is linked to an intersection multiplicity in the intersection theory. The main focus of the theory is to detect and measure a singular point of an algebraic variety (cf. resolution of singularities).
At the other extreme, if A = B is a non-singular subvariety, the self-intersection formula says that A · B is represented by the top Chern class of the normal bundle of A in X. To give a definition, in the general case, of the intersection multiplicity was the major concern of André Weil's 1946 book Foundations of Algebraic Geometry.
are solved using cross-multiplication, since the missing b term is implicitly equal to 1: a 1 = x d . {\displaystyle {\frac {a}{1}}={\frac {x}{d}}.} Any equation containing fractions or rational expressions can be simplified by multiplying both sides by the least common denominator .
In mathematics, Serre's multiplicity conjectures, named after Jean-Pierre Serre, are certain problems in commutative algebra, motivated by the needs of algebraic geometry. Since André Weil 's initial definition of intersection numbers , around 1949, there had been a question of how to provide a more flexible and computable theory, which Serre ...
A hyperbola meets it at two real points corresponding to the two directions of the asymptotes. An ellipse meets it at two complex points, which are conjugate to one another—in the case of a circle, the points (1 : i : 0) and (1 : –i : 0). A parabola meets it at only one point, but it is a point of tangency and therefore counts twice.
In practice, two distinct circles are tangent if they intersect at only one point; if they intersect at zero or two points, they are not tangent. The same holds true for a line and a circle. Two distinct lines cannot be tangent in the plane, although two parallel lines can be considered as tangent at a point at infinity in inversive geometry ...