Ad
related to: shapes fit perfectly together without gaps in job description or measurement
Search results
Results From The WOW.Com Content Network
In tiling or tessellation problems, there are to be no gaps, nor overlaps. Many of the puzzles of this type involve packing rectangles or polyominoes into a larger rectangle or other square-like shape. There are significant theorems on tiling rectangles (and cuboids) in rectangles (cuboids) with no gaps or overlaps:
The missing square puzzle is an optical illusion used in mathematics classes to help students reason about geometrical figures; or rather to teach them not to reason using figures, but to use only textual descriptions and the axioms of geometry. It depicts two arrangements made of similar shapes in slightly different configurations.
One type of 3-D jigsaw puzzle is a puzzle globe, often made of plastic. Like 2-D puzzles, the assembled pieces form a single layer, but the final form is three-dimensional. Most globe puzzles have designs representing spherical shapes such as the Earth, the Moon, and historical globes of the Earth. A puzzle without a picture
We’ve gathered some amusing and oddly satisfying examples of things that perfectly fit into other things. If that sounds like it can’t be all that enjoyable, just wait, get comfortable as you ...
The T-puzzle, a T shape can be assembled with the four pieces on the left. The T puzzle is a tiling puzzle consisting of four polygonal shapes which can be put together to form a capital T. The four pieces are usually one isosceles right triangle , two right trapezoids and an irregular shaped pentagon .
The tangram (Chinese: 七巧板; pinyin: qīqiǎobǎn; lit. 'seven boards of skill') is a dissection puzzle consisting of seven flat polygons, called tans, which are put together to form shapes. The objective is to replicate a pattern (given only an outline) generally found in a puzzle book using all seven pieces without overlap.
The most efficient way to pack different-sized circles together is not obvious. In geometry, circle packing is the study of the arrangement of circles (of equal or varying sizes) on a given surface such that no overlapping occurs and so that no circle can be enlarged without creating an overlap.
Like squares and equilateral triangles, regular hexagons fit together without any gaps to tile the plane (three hexagons meeting at every vertex), and so are useful for constructing tessellations. The cells of a beehive honeycomb are hexagonal for this reason and because the shape makes efficient use of space and building materials.