Ad
related to: kb chart chemistry
Search results
Results From The WOW.Com Content Network
This Wikipedia page provides a comprehensive list of boiling and freezing points for various solvents.
In thermodynamics, the ebullioscopic constant K b relates molality b to boiling point elevation. [1] It is the ratio of the latter to the former: = i is the van 't Hoff factor, the number of particles the solute splits into or forms when dissolved.
The result of this test is a scaleless index, usually referred to as the "Kb value". A higher Kb value means the solvent is more aggressive or active in the ability to dissolve certain materials. Mild solvents have low scores in the tens and twenties; powerful solvents like chlorinated solvents and naphthenic aromatic solvents (i.e. "High Sol ...
It can be seen in the table above that the second proton is removed from a negatively charged species. Since the proton carries a positive charge extra work is needed to remove it, which is why p K a2 is greater than p K a1 . p K a3 is greater than p K a2 because there is further charge separation.
The change in chemical potential of a solvent when a solute is added explains why boiling point elevation takes place. The boiling point elevation is a colligative property, which means that boiling point elevation is dependent on the number of dissolved particles but not their identity.
In chemistry, biochemistry, and pharmacology, a dissociation constant (K D) is a specific type of equilibrium constant that measures the propensity of a larger object to separate (dissociate) reversibly into smaller components, as when a complex falls apart into its component molecules, or when a salt splits up into its component ions.
The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency towards further change.
Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension General heat/thermal capacity C = / J⋅K −1: ML 2 T −2 Θ −1: Heat capacity (isobaric)