When.com Web Search

  1. Ad

    related to: regular vs semi regular tiling

Search results

  1. Results From The WOW.Com Content Network
  2. List of Euclidean uniform tilings - Wikipedia

    en.wikipedia.org/wiki/List_of_euclidean_uniform...

    The Laves tilings have vertices at the centers of the regular polygons, and edges connecting centers of regular polygons that share an edge. The tiles of the Laves tilings are called planigons. This includes the 3 regular tiles (triangle, square and hexagon) and 8 irregular ones. [4] Each vertex has edges evenly spaced around it.

  3. Euclidean tilings by convex regular polygons - Wikipedia

    en.wikipedia.org/wiki/Euclidean_tilings_by...

    A regular tiling has one type of regular face. A semiregular or uniform tiling has one type of vertex, but two or more types of faces. A k-uniform tiling has k types of vertices, and two or more types of regular faces. A non-edge-to-edge tiling can have different-sized regular faces.

  4. Lists of uniform tilings on the sphere, plane, and hyperbolic ...

    en.wikipedia.org/wiki/Lists_of_uniform_tilings...

    Edges exist between a generator point and its image across a mirror. Up to 3 face types exist centered on the fundamental triangle corners. Right triangle domains can have as few as 1 face type, making regular forms, while general triangles have at least 2 triangle types, leading at best to a quasiregular tiling.

  5. Uniform tiling - Wikipedia

    en.wikipedia.org/wiki/Uniform_tiling

    Seeing a regular star polygon as a nonconvex isotoxal simple polygon with twice as many (shorter) sides but alternating the same outer and "inner" internal angles allows regular star polygons to be used in a tiling, and seeing isotoxal simple polygons as "regular" allows regular star polygons to (but not all of them can) be used in a "uniform ...

  6. Uniform tilings in hyperbolic plane - Wikipedia

    en.wikipedia.org/wiki/Uniform_tilings_in...

    In hyperbolic geometry, a uniform hyperbolic tiling (or regular, quasiregular or semiregular hyperbolic tiling) is an edge-to-edge filling of the hyperbolic plane which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other).

  7. Tessellation - Wikipedia

    en.wikipedia.org/wiki/Tessellation

    There are eight semi-regular tilings (or nine if the mirror-image pair of tilings counts as two). [27] These can be described by their vertex configuration; for example, a semi-regular tiling using squares and regular octagons has the vertex configuration 4.8 2 (each vertex has one square and two octagons). [28]

  8. Semiregular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Semiregular_polyhedron

    In its original definition, it is a polyhedron with regular polygonal faces, and a symmetry group which is transitive on its vertices; today, this is more commonly referred to as a uniform polyhedron (this follows from Thorold Gosset's 1900 definition of the more general semiregular polytope).

  9. Demiregular tiling - Wikipedia

    en.wikipedia.org/wiki/Demiregular_tiling

    In geometry, the demiregular tilings are a set of Euclidean tessellations made from 2 or more regular polygon faces. Different authors have listed different sets of tilings. A more systematic approach looking at symmetry orbits are the 2-uniform tilings of which there are 20. Some of the demiregular ones are actually 3-uniform tilings.