When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Drag (physics) - Wikipedia

    en.wikipedia.org/wiki/Drag_(physics)

    In aerodynamics, aerodynamic drag, also known as air resistance, is the fluid drag force that acts on any moving solid body in the direction of the air's freestream flow. [ 22 ] From the body's perspective (near-field approach), the drag results from forces due to pressure distributions over the body surface, symbolized D p r {\displaystyle D ...

  3. Newton's sine-square law of air resistance - Wikipedia

    en.wikipedia.org/wiki/Newton's_sine-square_law_of...

    Isaac Newton's sine-squared law of air resistance is a formula that implies the force on a flat plate immersed in a moving fluid is proportional to the square of the sine of the angle of attack. Although Newton did not analyze the force on a flat plate himself, the techniques he used for spheres, cylinders, and conical bodies were later applied ...

  4. Lift (force) - Wikipedia

    en.wikipedia.org/wiki/Lift_(force)

    The relationship is thus a mutual, or reciprocal, interaction: Air flow changes speed or direction in response to pressure differences, and the pressure differences are sustained by the air's resistance to changing speed or direction. [87] A pressure difference can exist only if something is there for it to push against.

  5. Drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Drag_coefficient

    Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.

  6. Terminal velocity - Wikipedia

    en.wikipedia.org/wiki/Terminal_velocity

    Based on air resistance, for example, the terminal speed of a skydiver in a belly-to-earth (i.e., face down) free fall position is about 55 m/s (180 ft/s). [3] This speed is the asymptotic limiting value of the speed, and the forces acting on the body balance each other more and more closely as the terminal speed is approached. In this example ...

  7. Force - Wikipedia

    en.wikipedia.org/wiki/Force

    When the drag force associated with air resistance becomes equal in magnitude to the force of gravity on a falling object (), the object reaches a state of dynamic equilibrium at terminal velocity Main articles: Pressure , Drag (physics) , and Stress (mechanics)

  8. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    The equations ignore air resistance, which has a dramatic effect on objects falling an appreciable distance in air, causing them to quickly approach a terminal velocity. The effect of air resistance varies enormously depending on the size and geometry of the falling object—for example, the equations are hopelessly wrong for a feather, which ...

  9. Ballistic coefficient - Wikipedia

    en.wikipedia.org/wiki/Ballistic_coefficient

    Circa 1665, Sir Isaac Newton derived the law of air resistance. Newton's experiments on drag were through air and fluids. He showed that drag on shot increases proportionately with the density of the air (or the fluid), cross sectional area, and the square of the speed. [9] Newton's experiments were only at low velocities to about 260 m/s (853 ...