Search results
Results From The WOW.Com Content Network
As explained in Riesz & Sz.-Nagy (1990), every non-decreasing non-negative function F can be decomposed uniquely as a sum of a jump function f and a continuous monotone function g: the jump function f is constructed by using the jump data of the original monotone function F and it is easy to check that g = F − f is continuous and monotone. [10]
Monotonic function with a dense set of jump discontinuities (several sections shown) Plots of 6 monotonic growth functions. The following properties are true for a monotonic function :: has limits from the right and from the left at every point of its domain;
A function that is absolutely monotonic on [,) can be extended to a function that is not only analytic on the real line but is even the restriction of an entire function to the real line. The big Bernshtein theorem : A function f ( x ) {\displaystyle f(x)} that is absolutely monotonic on ( − ∞ , 0 ] {\displaystyle (-\infty ,0]} can be ...
The oscillation of a function at a point quantifies these discontinuities as follows: in a removable discontinuity, the distance that the value of the function is off by is the oscillation; in a jump discontinuity, the size of the jump is the oscillation (assuming that the value at the point lies between these limits of the two sides);
In mathematics, Helly's selection theorem (also called the Helly selection principle) states that a uniformly bounded sequence of monotone real functions admits a convergent subsequence. In other words, it is a sequential compactness theorem for the space of uniformly bounded monotone functions. It is named for the Austrian mathematician Eduard ...
In this way any monotone function can be written in a unique way as the sum of a continuous monotone function and a jump function. Since the formula for H ( x ) {\displaystyle H(x)} is a positive combination of characteristic functions, it is a uniformly convergent sum, so the analysis of Riesz & Sz.-Nagy (1990 , pp. 13–15) is particularly ...
In real analysis, a branch of mathematics, Bernstein's theorem states that every real-valued function on the half-line [0, ∞) that is totally monotone is a mixture of exponential functions. In one important special case the mixture is a weighted average , or expected value .
In more advanced mathematics the monotone convergence theorem usually refers to a fundamental result in measure theory due to Lebesgue and Beppo Levi that says that for sequences of non-negative pointwise-increasing measurable functions (), taking the integral and the supremum can be interchanged with the result being finite if either one is ...