Search results
Results From The WOW.Com Content Network
Mass flow rate is defined by the limit [3] [4] ˙ = =, i.e., the flow of mass through a surface per time .. The overdot on ˙ is Newton's notation for a time derivative.Since mass is a scalar quantity, the mass flow rate (the time derivative of mass) is also a scalar quantity.
In physics and engineering, mass flux is the rate of mass flow per unit of area. Its SI units are kg ⋅ s −1 ⋅ m −2. The common symbols are j, J, q, Q, φ, or Φ (Greek lowercase or capital Phi), sometimes with subscript m to indicate mass is the flowing quantity. This flux quantity is also known simply as "mass flow". [1] "
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface. Right: The reduction in flux passing through a surface can be visualized by reduction in F or d S equivalently (resolved into components , θ is angle to ...
Diffusion flux, the rate of movement of molecules across a unit area (mol·m −2 ·s −1). (Fick's law of diffusion) [7] Volumetric flux, the rate of volume flow across a unit area (m 3 ·m −2 ·s −1). (Darcy's law of groundwater flow) Mass flux, the rate of mass flow across a unit area (kg·m −2 ·s −1). (Either an alternate form of ...
Mass continuity (conservation of mass) The rate of change of fluid mass inside a control volume must be equal to the net rate of fluid flow into the volume. Physically, this statement requires that mass is neither created nor destroyed in the control volume, [2] and can be translated into the integral form of the continuity equation:
In physics and engineering, in particular fluid dynamics, the volumetric flow rate (also known as volume flow rate, or volume velocity) is the volume of fluid which passes per unit time; usually it is represented by the symbol Q (sometimes ˙). It contrasts with mass flow rate, which is the other main type of fluid flow rate.
In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.
The mass flow rate is the mass of the fluid traveling past a fixed point per unit time. The mass flow meter does not measure the volume per unit time (e.g. cubic meters per second) passing through the device; it measures the mass per unit time (e.g. kilograms per second) flowing through the device. Volumetric flow rate is the mass flow rate ...