Search results
Results From The WOW.Com Content Network
The diffusion equation is a parabolic partial differential equation. In physics, it describes the macroscopic behavior of many micro-particles in Brownian motion , resulting from the random movements and collisions of the particles (see Fick's laws of diffusion ).
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
Assuming that N particles start from the origin at the initial time t = 0, the diffusion equation has the solution (,) = (). This expression (which is a normal distribution with the mean μ = 0 {\displaystyle \mu =0} and variance σ 2 = 2 D t {\displaystyle \sigma ^{2}=2Dt} usually called Brownian motion B t {\displaystyle B_{t}} ) allowed ...
The convection–diffusion equation can be derived in a straightforward way [4] from the continuity equation, which states that the rate of change for a scalar quantity in a differential control volume is given by flow and diffusion into and out of that part of the system along with any generation or consumption inside the control volume: + =, where j is the total flux and R is a net ...
The concept of diffusion is widely used in many fields, including physics (particle diffusion), chemistry, biology, sociology, economics, statistics, data science, and finance (diffusion of people, ideas, data and price values). The central idea of diffusion, however, is common to all of these: a substance or collection undergoing diffusion ...
Rate 1 is the rate of effusion for the first gas. (volume or number of moles per unit time). Rate 2 is the rate of effusion for the second gas. M 1 is the molar mass of gas 1 M 2 is the molar mass of gas 2. Graham's law states that the rate of diffusion or of effusion of a gas is inversely proportional to the square root of its molecular weight.
Reaction–diffusion systems are naturally applied in chemistry. However, the system can also describe dynamical processes of non-chemical nature. Examples are found in biology, geology and physics (neutron diffusion theory) and ecology. Mathematically, reaction–diffusion systems take the form of semi-linear parabolic partial differential ...
The self-diffusion coefficient of neat water is: 2.299·10 −9 m 2 ·s −1 at 25 °C and 1.261·10 −9 m 2 ·s −1 at 4 °C. [2] Chemical diffusion occurs in a presence of concentration (or chemical potential) gradient and it results in net transport of mass. This is the process described by the diffusion equation.