Search results
Results From The WOW.Com Content Network
This theorem has since been extended to the time-dependent domain to develop time-dependent density functional theory (TDDFT), which can be used to describe excited states. The second HK theorem defines an energy functional for the system and proves that the ground-state electron density minimizes this energy functional.
The formal foundation of TDDFT is the Runge–Gross (RG) theorem (1984) [1] – the time-dependent analogue of the Hohenberg–Kohn (HK) theorem (1964). [2] The RG theorem shows that, for a given initial wavefunction, there is a unique mapping between the time-dependent external potential of a system and its time-dependent density.
Place this template at the bottom of appropriate articles in statistics: {{Statistics}} For most articles transcluding this template, the name of that section of the template most relevant to the article (usually where a link to the article itself is found) should be added as a parameter. This configures the template to be shown with all but ...
Japanese theorem for concyclic quadrilaterals (Euclidean geometry) John ellipsoid ; Jordan curve theorem ; Jordan–Hölder theorem (group theory) Jordan–Schönflies theorem (geometric topology) Jordan–Schur theorem (group theory) Jordan's theorem (multiply transitive groups) (group theory) Joubert's theorem ; JSJ theorem (3-manifolds)
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate; Pages for logged out editors learn more
This sub-template returns the associated territory's CPI for a specific year. It's used by {{Inflation/HK}} for calculating the inflation rate between two given years, which in turn is used by {} to calculate inflated values. It usually isn't meant to be called directly.
Littlewood's three principles are quoted in several real analysis texts, for example Royden, [2] Bressoud, [3] and Stein & Shakarchi. [4] Royden [5] gives the bounded convergence theorem as an application of the third principle. The theorem states that if a uniformly bounded sequence of functions converges pointwise, then their integrals on a ...
Using the standard formalism of probability theory, let and be two random variables defined on probability spaces (,,) and (,,).Then a coupling of and is a new probability space (,,) over which there are two random variables and such that has the same distribution as while has the same distribution as .