Search results
Results From The WOW.Com Content Network
Two-frequency beats of a non-dispersive transverse wave. Since the wave is non-dispersive, phase and group velocities are equal. For an ideal string, the dispersion relation can be written as =, where T is the tension force in the string, and μ is the string's mass per unit length. As for the case of electromagnetic waves in vacuum, ideal ...
Dispersion is a process by which (in the case of solid dispersing in a liquid) agglomerated particles are separated from each other, and a new interface between the inner surface of the liquid dispersion medium and the surface of the dispersed particles is generated. This process is facilitated by molecular diffusion and convection. [4]
A nonlinear dispersion relation (NDR) is a dispersion relation that assigns the correct phase velocity to a nonlinear wave structure. As an example of how diverse and intricate the underlying description can be, we deal with plane electrostatic wave structures ϕ ( x − v 0 t ) {\displaystyle \phi (x-v_{0}t)} which propagate with v 0 ...
In chemistry, the dispersity is a measure of the heterogeneity of sizes of molecules or particles in a mixture. A collection of objects is called uniform if the objects have the same size, shape, or mass. A sample of objects that have an inconsistent size, shape and mass distribution is called non-uniform.
Chemical graph theory is the topology branch of mathematical chemistry which applies graph theory to mathematical modelling of chemical phenomena. [1] The pioneers of chemical graph theory are Alexandru Balaban, Ante Graovac, Iván Gutman, Haruo Hosoya, Milan Randić and Nenad Trinajstić [2] (also Harry Wiener and others). In 1988, it was ...
The relationship between Fick's law and semiconductors: the principle of the semiconductor is transferring chemicals or dopants from a layer to a layer. Fick's law can be used to control and predict the diffusion by knowing how much the concentration of the dopants or chemicals move per meter and second through mathematics.
The non-random two-liquid model [1] (abbreviated NRTL model) is an activity coefficient model introduced by Renon and Prausnitz in 1968 that correlates the activity coefficients of a compound with its mole fractions in the liquid phase concerned. It is frequently applied in the field of chemical engineering to calculate phase equilibria.
Though chiral, the trefoil knot is also invertible, meaning that there is no distinction between a counterclockwise-oriented and a clockwise-oriented trefoil. That is, the chirality of a trefoil depends only on the over and under crossings, not the orientation of the curve.