Ad
related to: spatial statistics and modeling theory ppt presentation
Search results
Results From The WOW.Com Content Network
Spatial analysis of a conceptual geological model is the main purpose of any MPS algorithm. The method analyzes the spatial statistics of the geological model, called the training image, and generates realizations of the phenomena that honor those input multiple-point statistics.
In his widely cited book, Statistics for Spatial Data, [4] Cressie established a general spatial model that unified statistics for geostatistical data, regular and irregular lattice data, point patterns, and random sets, building on earlier research of his and many others on statistical theory, methodology, and applications for spatial data.
Spatial statistics is a field of applied statistics dealing with spatial data. It involves stochastic processes ( random fields , point processes ), sampling , smoothing and interpolation , regional ( areal unit ) and lattice ( gridded ) data, point patterns , as well as image analysis and stereology .
In spatial analysis, four major problems interfere with an accurate estimation of the statistical parameter: the boundary problem, scale problem, pattern problem (or spatial autocorrelation), and modifiable areal unit problem. [1] The boundary problem occurs because of the loss of neighbours in analyses that depend on the values of the neighbours.
Geostatistics is a branch of statistics focusing on spatial or spatiotemporal datasets.Developed originally to predict probability distributions of ore grades for mining operations, [1] it is currently applied in diverse disciplines including petroleum geology, hydrogeology, hydrology, meteorology, oceanography, geochemistry, geometallurgy, geography, forestry, environmental control, landscape ...
Chapter 6 concerns the types of data to be visualized, and the types of visualizations that can be made for them. Chapter 7 concerns spatial hierarchies and central place theory, while chapter 8 covers the analysis of spatial distributions in terms of their covariance. Finally, chapter 10 covers network and non-Euclidean data. [1] [3]
The need to use point processes to model these kinds of data lies in their inherent spatial structure. Accordingly, a first question of interest is often whether the given data exhibit complete spatial randomness (i.e. are a realization of a spatial Poisson process) as opposed to exhibiting either spatial aggregation or spatial inhibition.
Because the world is much more complex than can be represented in a computer, all geospatial data are incomplete approximations of the world. [9] Thus, most geospatial data models encode some form of strategy for collecting a finite sample of an often infinite domain, and a structure to organize the sample in such a way as to enable interpolation of the nature of the unsampled portion.