When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Qubit fluorometer - Wikipedia

    en.wikipedia.org/wiki/Qubit_fluorometer

    Specialized fluorescent dyes bind specifically to the substances of interest. A spectrophotometer is used in this method to measure the natural absorbance of light at 260 nm (for DNA and RNA) or 280 nm (for proteins). [5] [6] [7] [8]

  3. Warburg–Christian method - Wikipedia

    en.wikipedia.org/wiki/Warburg–Christian_method

    The Warburg–Christian method is an ultraviolet spectroscopic protein and nucleic acid assay method based on the absorbance of UV light at 260 nm and 280 nm wavelengths. Proteins generally absorb light at 280 nanometers due to the presence of tryptophan and tyrosine. Nucleic acids absorb more at 260 nm, primarily due to purine and pyrimidine ...

  4. Nucleic acid quantitation - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_quantitation

    The secondary benefit of using spectrophotometric analysis for nucleic acid quantitation is the ability to determine sample purity using the 260 nm:280 nm calculation. The ratio of the absorbance at 260 and 280 nm (A 260/280) is used to assess the purity of nucleic acids. For pure DNA, A 260/280 is widely considered ~1.8 but has been argued to ...

  5. Aromatic amino acid - Wikipedia

    en.wikipedia.org/wiki/Aromatic_amino_acid

    Aromatic amino acids, excepting histidine, absorb ultraviolet light above and beyond 250 nm and will fluoresce under these conditions. This characteristic is used in quantitative analysis, notably in determining the concentrations of these amino acids in solution. [1] [2] Most proteins absorb at 280 nm due to the presence of tyrosine and ...

  6. Protein methods - Wikipedia

    en.wikipedia.org/wiki/Protein_methods

    Absorbance: Read at 280 or 215 nm. Can be very inaccurate. Detection in the range of 100 μg/mL to 1 mg/mL. Ratio of absorbance readings taken at 260/280 can indicate purity/contamination of the sample (pure samples have a ratio <0.8) Bradford protein assay: Detection in the range of ~1 mg/mL; Biuret Test Derived Assays:

  7. Protein purification - Wikipedia

    en.wikipedia.org/wiki/Protein_purification

    Different proteins interact differently with the column material, and can thus be separated by the time required to pass the column, or the conditions required to elute the protein from the column. Proteins are typically detected as they are coming off the column by their absorbance at 280 nm. Many different chromatographic methods exist:

  8. Quantitative proteomics - Wikipedia

    en.wikipedia.org/wiki/Quantitative_proteomics

    The concentration of a certain protein in a sample may be determined using spectrophotometric procedures. [5] The concentration of a protein can be determined by measuring the OD at 280 nm on a spectrophotometer, which can be used with a standard curve assay to quantify the presence of tryptophan, tyrosine, and phenylalanine. [6]

  9. Dithiothreitol - Wikipedia

    en.wikipedia.org/wiki/Dithiothreitol

    Oxidized DTT exhibits a strong absorbance peak at 280 nm. Since thiols are less nucleophilic than their conjugate bases, thiolates, DTT becomes a less potent nucleophile as the pH falls. (2S)-2-Amino-1,4-dimercaptobutane (dithiobutylamine or DTBA), a related dithiol reducing agent, somewhat overcomes this limitation of DTT. [5]