When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Alpha decay - Wikipedia

    en.wikipedia.org/wiki/Alpha_decay

    Alpha decay is by far the most common form of cluster decay, where the parent atom ejects a defined daughter collection of nucleons, leaving another defined product behind. It is the most common form because of the combined extremely high nuclear binding energy and relatively small mass of the alpha particle.

  3. Alpha particle - Wikipedia

    en.wikipedia.org/wiki/Alpha_particle

    Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. [5] They are generally produced in the process of alpha decay but may also be produced in other ways. Alpha particles are named after the first letter in the Greek alphabet, α.

  4. Decay chain - Wikipedia

    en.wikipedia.org/wiki/Decay_chain

    The four most common modes of radioactive decay are: alpha decay, beta decay, inverse beta decay (considered as both positron emission and electron capture), and isomeric transition. Of these decay processes, only alpha decay (fission of a helium-4 nucleus) changes the atomic mass number ( A ) of the nucleus, and always decreases it by four.

  5. Radioactive decay - Wikipedia

    en.wikipedia.org/wiki/Radioactive_decay

    Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha, beta, and gamma decay.

  6. List of nuclides - Wikipedia

    en.wikipedia.org/wiki/List_of_nuclides

    Many of these in theory could decay through spontaneous fission, alpha decay, double beta decay, etc. with a very long half-life, but no radioactive decay has yet been observed. Thus, the number of stable nuclides is subject to change if some of these 251 are determined to be very long-lived radioactive nuclides in the future.

  7. Geiger–Nuttall law - Wikipedia

    en.wikipedia.org/wiki/Geiger–Nuttall_law

    In practice, this means that alpha particles from all alpha-emitting isotopes across many orders of magnitude of difference in half-life, all nevertheless have about the same decay energy. Formulated in 1911 by Hans Geiger and John Mitchell Nuttall as a relation between the decay constant and the range of alpha particles in air, [ 1 ] in its ...

  8. Polonium-210 - Wikipedia

    en.wikipedia.org/wiki/Polonium-210

    The decay chain of uranium-238, known as the uranium series or radium series, of which polonium-210 is a member Schematic of the final steps of the s-process.The red path represents the sequence of neutron captures; blue and cyan arrows represent beta decay, and the green arrow represents the alpha decay of 210 Po.

  9. Actinium-225 - Wikipedia

    en.wikipedia.org/wiki/Actinium-225

    Actinium-225 (225 Ac, Ac-225) is an isotope of actinium.It undergoes alpha decay to francium-221 with a half-life of 10 days, and is an intermediate decay product in the neptunium series (the decay chain starting at 237 Np).