Search results
Results From The WOW.Com Content Network
A set such as {{,,}} is a singleton as it contains a single element (which itself is a set, but not a singleton). A set is a singleton if and only if its cardinality is 1. In von Neumann's set-theoretic construction of the natural numbers, the number 1 is defined as the singleton {}.
Linear block codes that achieve equality in the Singleton bound are called MDS (maximum distance separable) codes. Examples of such codes include codes that have only codewords (the all-word for , having thus minimum distance ), codes that use the whole of () (minimum distance 1), codes with a single parity symbol (minimum distance 2) and their ...
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
The carrier (underlying set) associated with a unit type can be any singleton set. There is an isomorphism between any two such sets, so it is customary to talk about the unit type and ignore the details of its value. One may also regard the unit type as the type of 0-tuples, i.e. the product of no types.
For any non-empty set X, P = { X} is a partition of X, called the trivial partition. Particularly, every singleton set {x} has exactly one partition, namely { {x} }. For any non-empty proper subset A of a set U, the set A together with its complement form a partition of U, namely, { A, U ∖ A}.
Example of Kleene star applied to the empty set: ∅ * = {ε}. Example of Kleene plus applied to the empty set: ∅ + = ∅ ∅ * = { } = ∅, where concatenation is an associative and noncommutative product. Example of Kleene plus and Kleene star applied to the singleton set containing the empty string:
The set {A,A} is abbreviated {A}, called the singleton containing A. Note that a singleton is a special case of a pair. Note that a singleton is a special case of a pair. Being able to construct a singleton is necessary, for example, to show the non-existence of the infinitely descending chains x = { x } {\displaystyle x=\{x\}} from the Axiom ...
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...