Search results
Results From The WOW.Com Content Network
Ocean surface currents Distinctive white lines trace the flow of surface currents around the world. Visualization showing global ocean currents from January 1, 2010, to December 31, 2012, at sea level, then at 2,000 m (6,600 ft) below sea level Animation of circulation around ice shelves of Antarctica
The internal fields and surface currents are chosen to enforce the boundary conditions. In electromagnetism, surface equivalence principle or surface equivalence theorem relates an arbitrary current distribution within an imaginary closed surface with an equivalent source on the surface.
A summary of the path of the thermohaline circulation. Blue paths represent deep-water currents, while red paths represent surface currents. Thermohaline circulation. Thermohaline circulation (THC) is a part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes.
According to Gauss’s law, a conductor at equilibrium carrying an applied current has no charge on its interior.Instead, the entirety of the charge of the conductor resides on the surface, and can be expressed by the equation: = where E is the electric field caused by the charge on the conductor and is the permittivity of the free space.
The Kuroshio current is warm, compared to cooler waters in the Yellow Sea, and Sea of Japan. The Kuroshio is a relatively warm ocean current with an annual average sea-surface temperature of about 24 °C (75 °F), is approximately 100 kilometres (62 mi) wide, and produces frequent small to meso-scale eddies.
A Wind generated current is a flow in a body of water that is generated by wind friction on its surface. Wind can generate surface currents on water bodies of any size. The depth and strength of the current depend on the wind strength and duration, and on friction and viscosity losses, [1] but are limited to about 400 m depth by the mechanism, and to lesser depths where the water is shallower. [2]
Upwelling brings nutrients to the surface, which support phytoplankton and ultimately increase biological productivity. [1] The Humboldt Current is a highly productive ecosystem. It is the most productive eastern boundary current system. [4] It accounts for roughly 18-20% of the total worldwide marine fish catch.
At the surface, the current is located on the southern slope of the North Equatorial Trough, a region of low sea level which extends from east to west across the Pacific. The low sea level is a result of Ekman suction caused by the increased easterly winds found just to the north of the Intertropical Convergence Zone (ITCZ).